Обратная связь. Отрицательная обратная связь – Радиолюбительская азбука. Схемы на операционных усилителях с обратной связью Усилитель с обратной связью по току схема

Обратная связь (ОС) по напряжению, как следует из названия, относится к петлезамкнутым конфигурациям, в которых сигнал ошибки представляет собой напряжение. В традиционных операционных усилителях обратная связь формируется сигналом напряжения, т.е. входные выводы реагируют на изменение напряжения; при этом вырабатывается соответствующее выходное напряжение. Обратная связь по току относится к петлезамкнутым конфигурациям, в которых сигнал ошибки, используемый для реализации обратной связи, представляет собой ток. В ОУ с токовой обратной связью ток ошибки передается на один из его входных выводов; при этом на выходе также вырабатывается соответствующее выходное напряжение. Заметьте, что при работе обе структуры пытаются достигнуть одинакового результата: нулевое дифференциальное входное напряжение и нулевой входной ток. Идеальный ОУ с обратной связью по напряжению имеет высокоомные входы, результатом чего является нулевой входной ток, и использует обратную связь по напряжению для поддержания нулевого входного напряжения. ОУ с обратной связью по току, напротив, имеют низкоомный вход и использует токовую обратную связь для поддержания нулевого входного тока.

Передаточная функция трансимпедансного усилителя является зависимостью выходного напряжения от входного тока, и коэффициент “усиления” (точнее, коэффициент преобразования) такого усилителя v O /i IN имеет размерность сопротивления. Следовательно, ОУ с токовой обратной связью могут быть отнесены к трансимпедансным усилителям. Интересно отметить, что схема на ОУ с замкнутой обратной связью по напряжению, может быть также отнесена к трансимпедансным схемам при динамическом токовом управлении низкоимпедансным суммирующим выводом (например, при считывании сигнала фотодиода). Такая схема формирует выходное напряжение, равное входному току, умноженному на сопротивление обратной связи.

Так как, в принципе, любая схема с ОУ может быть выполнена либо с обратной связью по току, либо с обратной связью по напряжению, то преобразователь ток-напряжение может быть выполнен на операционном усилителе с токовой обратной связью. Когда используется термин трансимпедансный услитель, необходимо понимать разницу между ОУ с токовой ОС со специфичной структурой и любыми петлезамкнутыми преобразователями тока в напряжение, которые ведут себя как трансимпедансные схемы.

В упрощенной модели операционного усилителя с ОС по напряжению (бесконечное входное сопротивление, нулевое выходное сопротивление и высокий коэффициент усиления при разомкнутой ОС) в неинвертирующем включении разность напряжений на входах (V IN+ –V IN–) усиливается в соответствии с коэффициентом усиления с разомкнутой обратной связью A(s), и часть выходного напряжения передается на инвертирующий вход через резистивный делитель, состоящий из сопротивлений R F и R G .

Для этой схемы:

Подставляя и упрощая получаем:

Верхняя граница частотного диапазона (полоса) схемы с замкнутой обратной связью равна частоте, на которой петлевое усиление LG имеет единичное значение (0 дБ). Член 1 + R F /R G , называемый коэффициентом усиления шума, для неинвертирующей схемы также является коэффициентом усиления сигнала. На диаграмме Боде полоса схемы с замкнутой обратной связью определяется как пересечение графиков коэффициента усиления ОУ с разомкнутой обратной связью A(s) и коэффициента усиления шума NG. Большой коэффициент усиления шума уменьшает петлевое усиление и, следовательно, полосу при замкнутой ОС. Если график A(s) имеет наклон 20 дБ/декада, произведение коэффициента усиления схемы на ее полосу будет постоянной величиной. Таким образом, увеличение коэффициента усиления схемы на 20 дБ приведет к сужению полосы на одну декаду (в десять раз).

В упрощенной модели усилителя с обратной связью по току при неинвертирующем включении неинвертирующий вход является высокоимпедансным входом буфера с единичным коэффициентом усиления, а инвертирующий вход – низкоомный выход этого буфера. Буфер позволяет току ошибки I ERR втекать или вытекать из инвертирующего входа, и единичный коэффициент усиления вынуждает инвертирующий вход следить за сигналом неинвертирующего входа. Ток ошибки через резистор R F передается в высокоимпедансный узел, где он преобразуется в напряжение и передается через буфер (на схеме не показан) на выход. Высокоимпедансный узел является частотно-зависимым сопротивлением Z(s), по роли своей аналогичным усилению с разомкнутой обратной связью для ОУ с ОС по напряжению; он обладает высоким значением импеданса по постоянному току и имеет наклон 20 дБ/декада.

Обратная связь (ОС) находит широкое применение в разнообразных АЭУ, в т.ч. и в УУ. В УУ введение ОС призвано улучшить ряд основных показателей или придать новые специфические свойства. Особую, принципиальную роль ОС играет в микроэлектронных УУ. Можно утверждать, что без широкого использования ОС было бы крайне трудно осуществить серийный выпуск линейных ИМС.

Обратной связью называется передача части (или всей) энергии сигнала с выхода на вход устройства. Сниматься сигнал обратной связи может с выхода всего устройства или с какого-либо промежуточного каскада. ОС, охватывающую один каскад, принято называть местной, а охватывающую несколько каскадов или весь многокаскадный УУ - общей.

Структурная схема УУ с ОС приведена на рисунке 3.1.

Рис. 3.1. УУ с ОС

Обычно коэффициент усиления УУ и коэффициент передачи цепи ОС носят комплексный характер, что указывает на возможность фазового сдвига в областях НЧ и ВЧ за счет наличия реактивных элементов как в самом УУ, так и в цепи ОС.

Коэффициент передачи цепи ОС равен:

Согласно классической теории ОС, влияние ОС на качественные показатели УУ определяются возвратной разностью (глубиной ОС):

где - определитель при равенстве нулю параметра прямой передачи. Равенство нулю этого параметра равносильно разрыву замкнутой петли передачи сигнала с сохранением нагружающих иммитансов в месте разрыва.

Следование классической теории ОС приводит к сложности вычислений, преодолимой только с помощью ЭВМ.

Для эскизных расчетов пригодна элементарная теория ОС . Ее применение допустимо тогда, когда есть возможность разделения цепей прямой передачи и обратной передачи . В реальных УУ четкого разделения этих цепей невозможно, поэтому расчеты с помощью элементарной теории ОС приводят к погрешности результатов, впрочем, вполне допустимой для эскизного проектирования. Согласно элементарной теории ОС, глубина ОС определится как:

Если >0 - ОС носит положительный характер (ПОС), если <0 - ОС отрицательная (ООС), в последнем случае

Нетрудно увидеть, что в случае ПОС фазы входного сигнала и сигнала обратной связи совпадают и амплитуды складываются, что приводит к увеличению коэффициента усиления, в случае же ООС несовпадение фаз входного сигнала и сигнала обратной связи приводит к их вычитанию, и, следовательно, к уменьшению коэффициента усиления.

Основное применение в УУ находит ООС. Она позволяет повысить стабильность работы усилителей, а также улучшить другие важные параметры и характеристики. Сразу следует подчеркнуть, что снижение коэффициента усиления в современных УУ за счет ООС не является сегодня уж очень значительным фактором, т.к. широко используемые микроэлектронные структуры с большими собственными коэффициентами усиления позволяют иметь значительный по величине К. В дальнейшем основное внимание будет уделено именно ООС. ООС классифицируется в зависимости от способов подачи сигналов ООС во входную цепь усилителя и снятия их с выхода усилителя. Если во входной цепи вычитается ток ОС из тока входного сигнала, то такую ООС называют параллельной (т.к. выход цепи ООС подключен параллельно входу усилителя).

Если же во входной цепи вычитаются напряжения входного сигнала и сигнала обратной связи, то такую ООС называют последовательной (т.к. выход цепи ООС подключен последовательно входу усилителя).

По способу снятия сигнала обратной связи различают ООС по напряжению, когда сигнал ООС пропорционален выходному напряжению усилителя (вход цепи ООС подключен параллельно нагрузке усилителя), и ООС по току, когда сигнал ООС пропорционален току через нагрузку (вход цепи ООС подключен последовательно с нагрузкой усилителя).

Таким образом, следует выделить четыре основных варианта цепей ОС (рис.3.2): последовательная по току (последовательно-последовательная, Z-типа), последовательная по напряжению (последовательно-параллельная, H-типа), параллельная по напряжению (параллельно-параллельная, Y-типа) и параллельная по току (параллельно-последовательная, G-типа). Существуют и смешанные (комбинированные) ООС.


Рисунок 3.2. Типы ОС

3.2. Последовательная ООС по току

Схема каскада с последовательной ООС по току (ПООСТ) на ПТ с ОИ приведена на рисунке 3.3.


Рисунок 3.3. Каскад на ПТ с ПООС


При ПООСТ в выходной цепи усилителя последовательно с нагрузкой включается специальная цепь (на рисунке 3.3 это R ос C ос ), напряжение на которой U ос пропорционально выходному току. Во входной цепи усилителя U ос алгебраически складывается с входным напряжением. В области СЧ (C ос =0) можно записать

K 0ОС = K 0 /F = K 0 (1 + βK 0).

Проведя анализ каскада по методике подраздела 2.3, получим:

K 0ОС = K 0 /F = K 0 (1 + S 0 R ос ).

Поскольку K 0 =S 0 R экв (см. подраздел 2.9), то при глубокой ООС (F>10) K 0 ≈R экв /R ос . Из полученного выражения следует, что ПООСТ обеспечивает стабильность усиления по напряжению при условии постоянства нагрузки.

С помощью ПООСТ удается уменьшить нелинейные искажения в УУ, поскольку с увеличением F будет уменьшаться напряжение управления усилителем, его работа станет осуществляться на меньшем участке ВАХ активного элемента (транзистора), а это приведет к уменьшению коэффициента гармоник. В подразделе 8.1 приведены расчетные соотношения для коэффициента гармоник усилителя, охваченного ООС последовательного типа. Приближенно оценить влияние ПООСТ на коэффициент гармоник можно по соотношению:

K гОС = K г /F .

Все вышесказанное в равной мере относится и к каскаду на БТ с ОЭ и ПООСТ (схема каскада не приводится ввиду идентичности ее топологии схеме рисунка 3.3).

Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, ПООСТ увеличивает входное сопротивление усилителя в F раз, т.е.

R вхОС = R вх ·F .

Выражение для входного сопротивления каскада с ОЭ на БТ с ПООСТ, определенное по методике подраздела 2.3, имеет вид:

R вхОС = R 12 ∥ [r б + (1 + H 21э)·(r э + Δr + R ОС )].

При известных допущениях последние два выражения дают близкие результаты.

Входное сопротивление каскада с ОИ на ПТ определяется R з (см. подраздел 2.9), поэтому практически не меняется при охвате каскада ПООСТ.

Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСТ увеличивает выходное сопротивление усилителя в F раз, т.е.

R выхОС = R вых ·F .

На СЧ выходное сопротивление каскадов на ПТ (ОИ) и БТ (ОЭ) определяется в большинстве случаев соответственно номиналами R с и R к , поэтому данная ООС его практически не меняет.

На рисунке 3.3б приведена схема каскада с ОИ и ПООСТ в области ВЧ . Данный каскад еще носит название каскада с истоковой коррекцией , т.к. основной целью введения в каскад ООС является коррекция АЧХ в области ВЧ.

Поскольку цепь ООС (R ос C ос ) частотнозависима, то |F| с ростом частоты уменьшается относительно своего значения на СЧ, что приводит к относительному возрастанию |K ОС | на ВЧ. С точки зрения коррекции временных характеристик, уменьшение t у каскада объясняется зарядом C ос , что приводит к медленному нарастанию U ос , и, следовательно, к увеличению коэффициента усиления в области МВ, а это, в свою очередь, сокращает время заряда C н , которое, собственно, и определяет t у .

Анализ влияния ПООСТ вначале проведем для случая резистивной цепи ОС (C ос =0). Учитывая, что крутизна ПТ практически не зависит от частоты (см. подраздел 2.4.2), можно сказать, что во всем диапазоне рабочих частот глубина ООС F=const, уменьшение коэффициента усиления по всему диапазону рабочих часто одинаково и коррекция отсутствует.

где τ ос =R ос C ос .

Анализ полученного выражения упрощается в предположении τ в =τ ОС . При этом условии имеем:

где τ вОС =τ в /F (см. так же подраздел 2.9).

Уменьшение постоянной времени каскада в области ВЧ приводит к увеличению верхней граничной частоты f в (уменьшению t у ) каскада. Площадь усиления каскада с ОИ и истоковой коррекцией при этом не меняется:

П ос = K 0ОС ·f вОС = K 0 ·f в .

Расчет каскада с истоковой коррекцией в области НЧ ничем не отличается от расчета некорректированного каскада за исключением того, что формула для постоянной времени цепи истока будет выглядеть иначе:

τ нИ C и (1/S + R ос ).

В зависимости от цели введения ООС в каскад, глубину ООС можно определить по следующим соотношениям:

F = K 0 /K 0ОС , либо F = f вОС /f в .

При этом R ос =(F –1)/S 0 и C ос =1/(ω вОС ·R ос ).

Каскад с ОЭ и ПООСТ еще носит название каскада с эмиттерной коррекцией .

В отличие от ПТ, в БТ крутизна частотнозависима, поэтому даже при частотно-независимой цепи ООС (C ос =0) наблюдается эффект коррекции АЧХ и ПХ за счет уменьшения глубины ООС на ВЧ:

,

где τ вОС =τ/F +τ 1 /F +τ 2 (см. так же подраздел 2.5).

Нетрудно увидеть, что эмиттерная коррекция каскада на БТ при частотно-независимой цепи ООС (C ос =0) эффективна при τ 2 <<(τ+τ 1), т.е. в каскадах с малой емкостью нагрузки.

где τ ос =R ос C ос , τ" =K 0 R ос C н .

Эмиттерная коррекция позволяет значительно увеличить f в (уменьшить t у ) при заданных величинах подъема АЧХ на ВЧ (выброса ПХ δ в области МВ). Готовые таблицы и графики для расчета каскада с эмиттерной коррекцией приведены в .

Входная емкость каскада с ПООСТ уменьшиться примерно в F раз:

C вх дин ОС = τ/r б /F + (1 + K 0ОС)C к C вх дин /F .

Расчет каскада с ОЭ и ПООСТ в области НЧ ничем не отличается от каскада без ОС (следует только учитывать изменение R вх при расчете постоянных времени разделительных цепей), исключение составляет расчет постоянной времени цепи эмиттера:

τ нэОС = C э (1/S 0 + R ос ).

3.3. Последовательная ООС по напряжению

Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, последовательная ООС по напряжению (ПООСН) увеличивает входное сопротивление усилителя в F раз, т.е.

R вхОС = R вх ·F .

Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСН уменьшает выходное сопротивление усилителя в F раз, т.е.

R выхОС = R вых /F .

Уменьшение выходного сопротивления УУ снижает зависимость выходного напряжения от изменения величины нагрузки, следовательно, можно утверждать, что ПООСН стабилизирует коэффициент усиления по напряжению при изменении нагрузки. Ранее были рассмотрены эмиттерный и истоковый повторители, в которых имеет место 100%-ная ПООСН (подразделы 2.8, 2.11), поэтому ограничимся иллюстрацией применения ПООСН - трехкаскадным интегральным усилителем с внешней цепью ОС (резистор R ос , рисунок 3.4).


Рисунок 3.4. Усилитель с общей ПООСН


Возможность менять глубину общей ООС значительно расширяет сферу применения данного усилителя и делает ИМС многоцелевой.

3.4. Параллельная ООС по напряжению

Согласно элементарной теории ОС, параллельная ООС по напряжению (∥ООСН) не меняет коэффициент усиления по напряжению K 0 усилителя, но за счет изменения его входного сопротивления меняется сквозной коэффициент усиления K E . В результате уменьшения входного сопротивления R вх к входу усилителя приложится напряжение

U вх = E г ·ν вх ,

где ν вх - коэффициент передачи входной цепи УУ.

По аналогии с K 0ОС можно записать:

K E ОС = K E /(1 + βK 0) = ν вх K 0 /(1 + βK 0).

При глубокой ∥ООСН (βK 0 >> 1) получаем:

K E ОС ν вх /β .

Входное сопротивление усилителя с ∥ООСН определится как:

R вхОС = R вх /F I ,

где глубина ООС по току F I =1+β I K I , β I =I ос /I вых .

Величину выходного сопротивления УУ, охваченного ∥ООСН, можно приближенно оценить по уже известному соотношению:

R выхОС R вых /F .

Из изложенного следует, что ∥ООСН стабилизирует сквозной коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, уменьшает входное и выходное сопротивления усилителя.

Каскад на БТ с ОЭ и ∥ООСН представлен на рисунке 3.5.


Рисунок 3.5. Усилительный каскад на БТ с ОЭ и ∥ООСН


При ∥ООСН выходное напряжение каскада вызывает ток ОС, протекающий через цепь ОС R ос L ос C рос . Ранее (см. подраздел 2.6) рассматривалась схема коллекторной термостабилизации, работа которой основана на действии ∥ООСН. В данном же каскаде ∥ООСН действует только на частотах сигнала, что отражено на рисунке 3.5б.

т.к. S 0 R ос >>1, R экв =R к R н . В большинстве случаев R ос >R экв , поэтому K 0 меняется незначительно. Само же изменение K 0 объясняется тем, что, в отличие от классической структуры УУ с ∥ООСН, в реальной схеме каскада нет столь четкого разделения цепи ОС и цепи прямого усиления.

Входное сопротивление каскада с ∥ООСН равно:

Обычно K 0 >>g (R ос +R экв ), R ос >R экв и K 0 >>1, тогда

Выходное сопротивление каскада с ∥ООСН равно:

т.к. как правило S 0 >>g и S 0 R г >>1.

Для определения параметров каскада в области ВЧ следует воспользоваться соотношениями для каскада с ОЭ (см. подраздел 2.5), принимая во внимание, что при расчете постоянной времени каскада τ в следует учитывать выходное сопротивление каскада с ∥ООСН, т.е. R экв =R вых R н и влияние ∥ООСН на крутизну - S 0ОС =S 0 –1/R ос .

Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области ВЧ (МВ) путем включения последовательно с R ос корректирующей индуктивности L ос . Эффект коррекции объясняется уменьшением глубины ООС в области ВЧ (МВ). Расчет каскада с ОЭ и ∥ООСН в области НЧ ничем не отличается от расчета каскада без ОС (следует только учитывать изменение R вх и R вых при расчете постоянных времени разделительных цепей), исключение составляет расчет разделительной емкости C рос из условия X Cрос R ос /(10…20).

Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области НЧ (БВ) путем уменьшения емкости C рос . Эффект коррекции объясняется уменьшением глубины ООС в области НЧ (БВ).

Механизм действия ∥ООСН в каскаде на ПТ с ОИ (схема не приводится ввиду совпадения ее топологии рисунку 3.5) во многом идентичен только что рассмотренному. Приведем расчетные соотношения для основных параметров каскада на ПТ с ∥ООСН:

т.к. S 0 R ос >>1, R экв =R с R н .

Как правило, R ос >R экв и K 0 >>1, тогда

т.к. чаще всего S 0 R г >>1.

Все вышесказанное о влиянии ∥ООСН на АЧХ (ПХ) каскада на БТ справедливо и для каскада на ПТ.

∥ООСН обычно применяют тогда, когда требуется понизить входное сопротивление каскада, что необходимо во входных каскадах УУ, работающих в низкоомном согласованном тракте передачи.

3.5. Параллельная ООС по току

На рисунке 3.6 приведена схема двухкаскадного усилителя, охваченного общей параллельной ООС по току (∥ООСТ), которая вводится в усилитель путем включения резистора R ос .


Рисунок 3.6. Усилитель с общей ∥ООСТ


Напряжение ОС снимается с резистора R э 2 , включенного последовательно с нагрузкой усилителя. Напряжение ОС, пропорциональное выходному току усилителя, образует ток I ос , протекающий через R ос . Во входной цепи УУ происходит алгебраическое сложение токов I вх и I ос . Поскольку ∥ООСТ применяется в основном в усилителях тока, то логично оценить ее воздействие на коэффициент усиления по току:

K I ОС = K I /F I ,

где F I =1+β I K I - глубина ОС по току.

Если принять, что K I усилителя без ОС велик и источник сигнала имеет большое внутреннее сопротивление (т.е. представляет собой источник тока), то K I ОС ≈(R ос +R э 2)/R э 2 . Если R ос >>R э 2 , то K I ОС R ос /R э 2 . Следовательно, ∥ООСТ стабилизирует коэффициент передачи по току УУ.

Входное сопротивление УУ с ОС определяется способом подачи сигнала ОС во входную цепь, поэтому:

R вхОС = R вх /F I .

Выходное сопротивление УУ с ОС определяется способом снятия сигнала ОС в выходной цепи, поэтому:

R выхОС R вых ·F I .

Описанный усилитель целесообразно выполнить в виде ИМС с внешней цепью ОС, что позволяет в широких пределах изменять его характеристики.

3.6. Дополнительные сведения по ОС

3.6.1. Комбинированная ООС

В УУ возможно применение различных видов ООС одновременно. Характерным примером в этом отношении является каскад с ОЭ и комбинированной ООС (рисунок 3.7) - ПООСТ за счет R 1 и ∥ООСН за счет R 2 .

Применение подобной комбинированной ООС (КООС) целесообразно в случае выполнения усилителя в виде гибридно-пленочной ИМС, поскольку резисторы, выполненные по толсто- или тонкопленочной технологии имеют уход параметров в одну сторону (в плюс или минус). Влияние R 1 и R 2 , например, на коэффициент усиления противоположны по знаку, поэтому одновременное их уменьшение или увеличение практически не скажется на результирующем коэффициенте усиления.


Рисунок 3.7. Усилительный каскад с комбинированной ООС


При приближенном анализе каскада с КООС следует учитывать, что коэффициент усиления будет в основном определяться ПООСТ, а R вх и R вых - ∥ООСН, поэтому:

K 0 ОС K 0 /F 1 ,

где g ос =1/[r б +(1+H 21э)·(r э r +R 1)], S 0ОС =S 0 /F 1 , F 1 =1+S 0 R 1 .

Более подробно анализ каскадов с КООС представлен в .

3.6.2. Многокаскадные усилители с ООС

Для получения ООС в УУ необходимо, чтобы суммарный фазовый сдвиг φ, вносимый усилителем и цепью ОС, был равен 180° во всем диапазоне рабочих частот. В многокаскадном усилителе это требование обычно выполняется, строго говоря, только на одной частоте. На остальных частотах, особенно на границах и за пределами полосы рабочих частот АЧХ, j≠180°. Это происходит за счет дополнительных фазовых сдвигов, вносимых реактивными элементами схемы усилителя, причем эти сдвиги будут тем больше, чем большее число каскадов охвачено общей цепью ООС. При дополнительном фазовом сдвиге 180°, j=360° (баланс фаз), ООС превратится в ПОС, и, если βК>>1 (баланс амплитуд), усилитель превратится в генератор.

Самым эффективным и достаточно простым способом, исключающим сложных стабилизированных источников питания, является применение развязывающих (устраняющих ОС) фильтров, состоящих из R ф и C ф и включаемых последовательно или параллельно источнику питания (рисунки 3.8 и 3.9).


Рисунок 3.8. Усилитель с последовательным включением фильтров развязки по питанию



Рисунок 3.8. Усилитель с параллельным включением фильтров развязки по питанию


Номинал резистора R ф определяется требуемым напряжением питания предварительных каскадов, которое, как правило, меньше, чем у оконечного.

Операционный усилитель - это электронный усилитель напряжения с высоким коэффициентом усиления, имеющий дифференциальный вход и обычно один выход. Напряжение на выходе может превышать разность напряжений на входах в сотни или даже тысячи раз.

Своё начало операционные усилители ведут от аналоговых компьютеров, где они применялись во многих линейных, нелинейных и частото-зависимых схемах. Параметры схем с операционными усилителями определяются только внешними компонентами, а так же небольшой температурной зависимостью или разбросом параметров при их производстве, что делает операционные усилители очень популярными элементами при конструировании электронных схем.

Операционные усилители являются наиболее востребованными приборами среди современных электронных компонент, они находят своё применение в потребительской электронике, применяются индустрии и в научных приборах. Многие стандартные микросхемы операционных усилителей стоят всего несколько центов. Но некоторые модели гибридных или интегрированных операционных усилителей со специальными характеристиками, выпускаемые мелкими партиями, могут стоить более сотни долларов. Операционные усилители обычно выпускаются как отдельные компоненты, а так же они могут являться элементами более сложных электронных схем.

Операционный усилитель является разновидностью дифференциального усилителя. Другими разновидностями дифференциального усилителя являются:

  1. Полностью дифференциальный усилитель (это устройство похоже по принципу действия на операционный усилитель, но имеет два выхода);
  2. Инструментальный усилитель (он обычно состоит из трёх операционных усилителей);
  3. Изолированный усилитель (это усилитель похож на инструментальный, но он выдерживает такие высокие напряжения, которые могут вывести из строя обычный операционный усилитель);
  4. Усилитель с отрицательной обратной связью (обычно содержит один или два операционных усилителя и резистивную цепь обратной связи).

Выводы для подачи напряжения питания (V S+ и V S-) могут обозначаться по-разному. Невзирая на различное обозначение, их функция остаётся одной и той же - обеспечение дополнительной энергии для усиления сигнала. Часто на схемах эти выводы не изображают, чтобы не загромождать чертёж, и их наличие либо указывается отдельно, либо должно быть ясно из схемы.

Обозначения на схеме

Принцип действия

Дифференциальные входы усилителя состоят из двух выводов - V + и V - , идеальный операционный усилитель усиливает только разницу напряжений между двумя этими входами, эта разница называется дифференциальным напряжением на входе. Напряжение на выходе операционного усилителя определяется формулой

V out = A OL (V + - V -)

где V + - напряжение на неинвертирующем (прямом) входе, V - - напряжение на инвертирующем (инверсном) входе, и A OL - коэффициент усиления усилителя с разомкнутой петлёй обратной связи (то есть обратная связь от выхода ко входу отсутствует).

Операционный усилитель без отрицательной обратной связи (компаратор)

Значение коэффициента усиления у микросхем операционных усилителей обычно большое - 100000 и более, следовательно довольно небольшая разница напряжений между входами V + и V - приведёт к появлению на выходе усилителя напряжения почти равному напряжению питания. Это называется насыщение усилителя. Величина коэффициента усиления A OL имеет технологический разброс, поэтому не стоит использовать один операционный усилитель в качестве дифференциального усилителя, рекомендуется применять схему из трёх усилителей. Без отрицательной обратной связи, и возможно при наличии положительной обратной связи, операционный усилитель будет работать как компаратор. Если инвертирующий вход соединить с общим проводом (нулевым потенциалом) напрямую или через резистор, а напряжение V in , поданное на неинвертирующий вход будет положительным, то выходное напряжение будет максимально положительным. Если подать на вход отрицательное напряжение V in , то на выходе напряжение будет максимально отрицательным. Поскольку с выхода на входы обратная связь отсутствует, то такая схема с разомкнутой цепью обратной связи будет работать как компаратор, коэффициент усиления схемы будет равен коэффициенту усиления операционного усилителя A OL .

Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)

Для того, что бы работа операционного усилителя была предсказуемой, применяется отрицательная обратная связь, которая устанавливается путём подачи части напряжения с выхода усилителя на его инвертирующий вход. Эта замкнутая цепь обратной связи существенно снижает усиление усилителя. При использовании отрицательной обратной связи общее усиление схемы значительно больше зависит от параметров цепи обратной связи, чем от параметров операционного усилителя. Если цепь обратной связи содержит компоненты с относительно стабильными параметрами, то изменения параметров операционного усилителя существенно не влияют на характеристики схемы. Передаточная характеристика схемы с операционным усилителем определяется математически передаточной функцией. Проектирование схем с заданной передаточной функцией с операционными усилителями относится к области радиоэлектроники. Передаточная функция является важным фактором в большинстве схем, использующих операционные усилители, например, в аналоговых компьютерах. Высокое входное сопротивление входов и низкое выходное сопротивление выхода является так же полезной особенностью операционных усилителей.

Например, если к неинвертирующему усилителю добавить отрицательную обратную связь (см. рисунок справа) с помощью делителя напряжения R f , R g , то это приведёт к снижению усиления схемы. Равновесие восстановится тогда, когда напряжение на выходе V out станет достаточным для того, что бы изменить напряжение на инвертирующем входе до напряжения V in . Коэффициент усиления всей схемы определяется по формуле 1 + R f /R g . Например, если напряжение V in = 1 вольт, а сопротивления R f и R g одинаковые (R f = R g), то на выходе V out будет присутствовать напряжение 2 вольта, величина этого напряжения как раз достаточная для того, что бы на инвертирующий вход V - поступало напряжение 1 вольт. Так как резисторы R f и R g образуют цепь обратной связи, подключённой от выхода ко входу, то получается схема с замкнутой петлёй обратной связи. Общий коэффициент усиления схемы V out / V in называется коэффициентом усиления с замкнутой петлёй обратной связи A CL . Так как обратная связь отрицательная, то в этом случае A CL < A OL .

Можно рассмотреть это с другой стороны, сделав два предположения:
Во-первых, когда операционный усилитель работает в линейном режиме, то разница напряжений между его неинвертирующим (+) и инвертирующим (-) выводами настолько мала, что ею можно пренебречь.
Во-вторых, будем считать входные сопротивления обоих входов (+) и (-) очень высокими (несколько мегаом у современных операционных усилителей).
Таким образом, когда схема, изображённая на рисунке справа, работает как неинвертирующий линейный усилитель, то напряжение V in , появившееся на входах (+) и (-), приведёт к появлению тока i , протекающего через резистор R g , величиной V in /R g . Согласно закону Кирхгофа, утверждающего, что сумма токов, втекающих в узел, равна сумме токов, вытекающих из этого узла, и поскольку сопротивление входа (-) почти бесконечно, можно предположить, что почти весь ток i , протекающий через резистор R f , создаёт напряжение на выходе, равное V in + i * R f . Подставляя слагаемые в формулу, можно легко определить усиление схемы этого типа.

i = V in / R g

V out = V in + i * R f = V in + (V in / R g * R f) = V in + (V in * R f) / R g =V in * (1+ R f / R g)

G = V out / V in

G = 1 + R f / R g

Характеристики операционных усилителей

Идеальный операционный усилитель

Эквивалентная схема операционного усилителя в которой смоделированы некоторые неидеальные резистивные параметры

Идеальный операционный усилитель может работать при любых входных напряжениях и имеет следующие свойства:

  • Коэффициент усиления с разомкнутой петлёй обратной связи равен бесконечности (при теоретическом анализе полагают коэффициент усиления при разомкнутой петле обратной связи A OL стремящимся к бесконечности).
  • Диапазон выходных напряжений V out равен бесконечности (на практике диапазон выходных напряжений ограничивают величиной напряжения питания V s+ и V s-).
  • Бесконечно широкая полоса пропускания (т.е. амплитудно-частотная характеристика является идеально плоской с нулевым фазовым сдвигом).
  • Бесконечно большое входное сопротивление (R in = ∞, ток из V + в V - не течёт).
  • Нулевой входной ток (т.е. предполагается отсутствие токов утечки и токов смещения).
  • Нулевое напряжение смещения, т.е. когда входы соединены между собой V + = V - , то на выходе присутствует виртуальный ноль (V out = 0).
  • Бесконечно большая скорость нарастания напряжения на выходе (т.е. скорость изменения выходного напряжения не ограничена) и бесконечно большая пропускная мощность (напряжение и ток не ограничены на всех частотах).
  • Нулевое выходное сопротивление (R out = 0, так что выходное напряжение не меняется при изменении выходного тока).
  • Отсутствие собственных шумов.
  • Бесконечно большая степень подавления синфазных сигналов.
  • Бесконечно большая степень подавления пульсаций питающих напряжений.

Эти свойства сводятся к двум "золотым правилам":

  1. Выход операционного усилителя стремится к тому, что бы разница между входными напряжениями стала равной нулю.
  2. Оба входа операционного усилителя не потребляют ток.

Первое правило применимо к операционному усилителю, включённому в схему с замкнутой петлёй отрицательной обратной связи. Эти правила обычно применяются для анализа и проектирования схем с операционными усилителями в первом приближении.

На практике ни одно из идеальных свойств не может быть полностью достигнуто, поэтому приходится идти на различные компромиссы. В зависимости от желаемых параметров, при моделировании реального операционного усилителя учитывают некоторые неидеальности, используя эквивалентные цепи из резисторов и конденсаторов в его модели. Разработчик может заложить эти нежелательные, но реальные эффекты в общую характеристику проектируемой схемы. Влияние одних параметров может быть пренебрежительно мало, а другие параметры могут налагать ограничение на общие характеристики схемы.

Реальный операционный усилитель

В отличии от идеального, реальный операционный усилитель имеет неидеальность различных параметров.

Неидеальность параметров по постоянному току

Конечный коэффициент усиления У идеального операционного усилителя с разомкнутой петлёй обратной связи коэффициент усиления бесконечен, в отличии от реального усилителя, у которого он конечен. Типичные значения этого параметра по постоянному току при разомкнутой петле обратной связи находятся в диапазоне от 100000 до более чем миллиона. Поскольку этот коэффициент усиления очень большой, то усиление схемы будет определяться исключительно коэффициентом отрицательной обратной связи (т.е. коэффициент усиления схемы не будет зависеть от коэффициента усиления операционного усилителя при разомкнутой петле обратной связи). Если же коэффициент усиления схемы при замкнутой петле обратной связи требуется очень большой, то для этого коэффициент обратной связи должен быть очень небольшим, поэтому в этом случае операционный усилитель перестанет вести себя идеально. Конечное входное сопротивление Дифференциальное входное сопротивление операционного усилителя определяется как сопротивление между его двумя входами; синфазное входное сопротивление - это сопротивление между каким-либо из входов и землёй. Операционные усилители со входами на полевых транзисторах часто имеют защитные цепи на своих входах для защиты от превышения входным напряжением некоторого порога, так что в некоторых тестах входное сопротивление таких приборов может оказаться очень низким. Но поскольку эти операционные усилители обычно используются в схемах с глубокой обратной связью, то эти защитные цепи остаются не задействованы. Напряжение смещения и токи утечки, описанные далее, являются гораздо более важными параметрами при проектировании схем с операционными усилителями. Ненулевое выходное сопротивление Низкое выходное сопротивление является очень важным для низкоомных нагрузок, так как падение напряжения на выходном сопротивлении может быть существенным. Следовательно, выходное сопротивление усилителя ограничивает максимально достижимую выходную мощность. В схемах с отрицательной обратной связью по напряжению выходное сопротивление усилителя уменьшается. Таким образом при применении операционных усилителей в линейных схемах можно получить очень низкое выходное сопротивление. Однако отрицательная обратная связь не может уменьшить ограничения, накладываемые сопротивлениями R load (сопротивление нагрузки) и R out (выходное сопротивление операционного усилителя) на возможные максимальное и минимальное выходные напряжения - она может только снизить ошибки в этом диапазоне напряжений. Низкое выходное сопротивление обычно требует высоких токов покоя для выходных каскадов операционного усилителя, что ведёт к увеличению рассеиваемой мощности, так что в маломощных схемах приходится умышленно жертвовать низким выходным сопротивлением. Входной ток Из-за наличия токов смещения или утечки, небольшой ток (обычно - ≈ 10 наноампер для операционных усилителей с биполярными транзисторами во входных каскадах, десятки пикоампер - для входных каскадов на полевых транзисторах и несколько пикоампер для МОП входных каскадов) попадает на входы. Когда в схеме используются резисторы или источники сигнала с высоким сопротивлением, то незначительный ток может создать довольно большое падение напряжения. Если входные токи совпадают, и сопротивления, подключённые к обоим входам одинаковые, то в этом случае напряжения на входах окажутся одинаковыми. Поскольку для работы операционного усилителя важна разность напряжений между входами, то эти одинаковые напряжения на входах не повлияют на работу схемы (если конечно операционный усилитель хорошо подавляет синфазный сигнал). Но обычно эти токи на входах (или входные сопротивления на входах) немного не совпадают, так что возникает небольшое напряжение смещения (но это не то напряжение смещения, которое описано абзацем ниже). Это напряжение смещения может создать смещение или дрейф операционного усилителя. Часто в схеме применяются органы регулировки для его компенсации. У некоторых операционных усилителей предусмотрены выводы для подключения внешнего подстроечного резистора, которым можно сбалансировать входы и тем самым убрать это смещение. Некоторые операционные усилители могут автоматически компенсировать напряжение смещения. Входное напряжение смещения Это напряжение, необходимое на входах операционного усилителя для того, что бы установить напряжение на выходе, равное нулю, относится к несовпадению входных токов смещения. В идеальном усилителе отсутствует входное напряжение смещения. Но в реальных операционных усилителях это напряжение присутствует, так как у большинства усилителей на входе имеется неидеальный дифференциальный каскад. Входное напряжение смещения создаёт две проблемы: во-первых, из-за высокого коэффициента усиления по напряжению выход усилителя практически гарантированно перейдёт в состояние насыщения при работе без цепи отрицательной обратной связи, даже если оба входа соединены между собой. Во-вторых, при замкнутой цепи отрицательной обратной связи входное напряжение смещения будет усиливаться вместе с сигналом и это может привести к проблемам для высокоточных усилителей постоянного тока или если входной сигнал очень слабый. Усиление синфазного сигнала Идеальный операционный усилитель усиливает только разницу напряжений между входами, полностью подавляя все напряжения, общие для обоих входов. Однако дифференциальный входной каскад реальных операционных усилителей никогда не бывает идеальным, что приводит к некоторому усилению одинаковых напряжений, приложенных к обоим входам. Величину этого недостатка измеряют коэффициентом подавления синфазного сигнала. Минимизация усиления синфазного сигнала обычно важна в схемах неинвертирующих усилителей с большим коэффициентом усиления. Выходной втекающий ток Выходной втекающий ток - это максимально допустимый втекающий ток для выходного каскада. Некоторые производители указывают зависимость выходного напряжения от втекающего тока на графике, что позволяет получить представление о выходном напряжении при наличии тока из внешнего источника, втекающего в выходной каскад усилителя. Температурная зависимость Все параметры изменяются при изменении температуры. Температурный дрейф входного напряжения смещения является особенно важным параметром. Подавление пульсаций питающих напряжений Выходной сигнал идеального операционного усилителя будет полностью независим от пульсаций питающего напряжения на его выводах питания. Каждый реальный операционный усилитель имеет определённый коэффициент подавления пульсаций питающих напряжений, который показывает, насколько подавляются эти пульсации. Применение блокировочных конденсаторов по питанию могут улучшить этот параметр для многих устройств, включая и операционные усилители. Дрейф Параметры реальных операционных усилителей подвергаются медленному изменению со временем, при изменении температуры, и т.д. Шумы Даже при отсутствии сигнала на входе усилители хаотически изменяют напряжение на выходе. Это может иметь место из-за тепловых шумов или фликкер-шума, присущих устройству. При использовании в схемах с высоким коэффициентом усиления или с широкой полосой пропускания уровень шума становится очень важным фактором, который следует принимать в расчёт.

Неидеальность параметров по переменному току

Усиление операционного усилителя, рассчитанное по постоянному току, неприменимо для высоких частот. При проектировании схем с операционными усилителями, рассчитанными на работу с высокой частотой, следует руководствоваться более сложными соображениями.

Конечная полоса пропускания Все усилители имеют конечный частотный диапазон. В первом приближении операционный усилитель имеет амплитудно-частотную характеристику интегратора с усилением. То есть усиление типичного операционного усилителя обратно пропорционально частоте, оно характеризуется произведением коэффициента усиления на ширину полосы пропускания f Т. Например, операционный усилитель с f Т = 1 мГц может иметь усиление пять раз на частоте 200 кГц, и усиление, равное единице на частоте 1 мГц. АЧХ операционного усилителя совместно с очень высоким коэффициентом усиления по постоянному току дают амплитудно-частотную характеристику как у низкочастотного фильтра первого порядка с высоким коэффициентом усиления по постоянному току и низкой частотой среза (f Т делённое на коэффициент усиления). Конечная ширина полосы пропускания операционного усилителя может быть источником нескольких проблем, включая:
  • Стабильность. Разность фаз между входным и выходным сигналом имеет связь с ограничением полосы пропускания, так что в некоторых схемах обратной связи это может привести к возникновению самовозбуждения. Например, если синусоидальный сигнал на выходе, который должен противофазно складываться с входным сигналом, будет задержан на 180° то он будет складываться синфазно с входным сигналом, т.е. образуется положительная обратная связь. В этих случаях цепь обратной связи может быть стабилизирована путём применения схемы частотной компенсации, которая увеличивает усиление или сдвиг фазы при разомкнутой петле обратной связи. Эта компенсация может быть реализована с помощью внешних компонент. Так же эта компенсация может быть реализована внутри операционного усилителя, путём добавления доминирующего полюса, который достаточно ослабляет усиление на высоких частотах. Расположение этого полюса может быть установлено внутри производителем микросхем, или же настраиваться, используя специфические для каждого операционного усилителя методы. Обычно доминирующий полюс ещё больше снижает полосу пропускания операционного усилителя. Когда требуется высокий коэффициент усиления при замкнутой петле обратной связи, то часто частотная компенсация бывает не нужна, так как необходимое усиление с разомкнутой петлёй обратной связи достаточно мало. Следовательно, в схемах с высоким коэффициентом усиления при замкнутой петле обратной связи можно использовать операционные усилители с более широкой полосой пропускания.
  • Шумы, искажения, и и другие эффекты. Снижение полосы пропускания так же приводит к снижению коэффициента передачи цепи обратной связи на высоких частотах, что ведёт к увеличению искажений, шумов, выходного сопротивления, а так же снижает линейность фазы выходного сигнала с повышением частоты.
Входная ёмкость Входная ёмкость является важным параметром при работе на высоких частотах, так как она снижает коэффициент усиления усилителя с разомкнутой петлёй обратной связи. Усиление синфазного сигнала См. .

Нелинейные параметры

Насыщение Размах выходного напряжения операционного усилителя ограничивается значениями, близкими к значениям питающих напряжений. Когда выходное напряжение достигает этих значений, то усилитель насыщается, это происходит из-за следующих причин:
  • Если используется двухполярное питание, то при большом коэффициенте усиления по напряжению сигнал должен быть усилен настолько, что его амплитуда должна была бы превысить положительное питающее напряжение или быть меньше отрицательного питающего напряжения, что невыполнимо, поскольку выходное напряжение не может выйти за эти пределы.
  • При использовании однополярного питания может либо иметь место то же самое, что и при использовании двуполярного питания, либо входной сигнал может иметь настолько низкое напряжение относительно земли, что коэффициента усиления усилителя будет недостаточным, что бы поднять его выше нижнего порога.
Ограниченная скорость нарастания Скорость изменения напряжения на выходе усилителя конечна, она обычно измеряется в вольтах на микросекунду. При достижении максимально возможной скорости нарастания сигнала на входе, на выходе скорость нарастания прекратит увеличиваться. Скорость нарастания сигнала обычно ограничивается из-за наличия внутренних ёмкостей в операционном усилителе, эти ёмкости особенно велики там, где используется внутренняя коррекция. Нелинейная зависимость выходного напряжения от напряжения на входе Выходное напряжение может быть не точно пропорционально разности напряжений на входах. В практических схемах этот эффект проявляется очень слабо, если используется сильная отрицательная обратная связь.

Ограничения тока и напряжения

Ограничение выходного тока Сила тока на выходе не может быть бесконечной. На практике большинство операционных усилителей спроектированы с возможностью ограничения выходного тока, что бы этот ток не превышал определённой величины, что предотвращает выход операционного усилителя и нагрузки из строя. Современные модели операционных усилителей более устойчивы к токовым перегрузкам, чем ранние, и некоторые модели современных устройств позволяют выдерживать короткое замыкание выхода без повреждений. Ограничение мощности рассеяния На выходном сопротивлении операционного усилителя, через которое протекает ток, рассеивается тепло. Если операционный усилитель будет рассеивать слишком много тепла, то его температура поднимется выше критического значения. В этом случае может сработать защита от перегрева или операционный усилитель выйдет из строя.

Современные операционные усилители с полевыми и МОП - транзисторами по своим характеристикам приближаются гораздо ближе к идеальным операционным усилителям, чем модели с биполярными транзисторами, когда важно входное сопротивление и входные токи смещения. Операционные усилители с биполярными транзисторами лучше использовать тогда, когда требуется меньшее входное напряжение смещения и часто меньшие собственные шумы. Операционные усилители с полевыми и МОП - транзисторами, в схемах с ограниченной полосой пропускания, работающие при комнатной температуре, обычно имеют лучшие характеристики.

Хотя дизайн разных моделей микросхем от разных производителей может варьироваться, все операционные усилители имеют в основном схожую внутреннюю структуру, которая состоит из трёх каскадов:

  1. Дифференциальный усилитель - предназначен для усиления сигнала, имеет низкий уровень собственных шумов, высокое входное сопротивление и обычно дифференциальный выход.
  2. Усилитель напряжения - обеспечивает высокое усиление сигнала по напряжению, имеет спадающую амплитудно-частотную характеристику с одним полюсом, и обычно имеет один выход.
  3. Выходной усилитель - обеспечивает высокую нагрузочную способность, низкое выходное сопротивление, ограничение тока и защиту при коротком замыкании.

Микросхемы операционных усилителей обычно имеют умеренную сложность. Типичным примером является широко распространённая микросхема операционного усилителя 741 (советский аналог - К140УД7), разработанная компанией "Fairchild Semiconductor" после предыдущей модели - LM301. Базовая архитектура усилителя 741 такая же, как и у 301 модели.

Входной каскад

В качестве входного каскада используется дифференциальный усилитель со сложной схемой смещения, активной нагрузкой которого является токовое зеркало.

Дифференциальный усилитель

Дифференциальный усилитель реализован на двухступенчатом каскаде, удовлетворяющем противоречивые требования. Первая ступень состоит из n-p-n эмиттерных повторителей на транзисторах Q1 и Q2, что позволяет получить высокое входное сопротивление. Вторая ступень основана на p-n-p транзисторах Q3 и Q4, включённых по схеме с общей базой, что позволяет избавиться от вредного действия эффекта Миллера , сдвинуть уровень напряжения вниз и обеспечить достаточное усиление по напряжению для работы следующего каскада - усилителя класса "А". Применение p-n-p транзисторов так же помогает увеличить напряжение пробоя V бэ (переходы база-эмиттер n-p-n транзисторов Q1 и Q2 имеют напряжение пробоя около 7 вольт, а напряжение пробоя p-n-p транзисторов Q3 и Q4 составляет около 50 вольт).

Цепи смещения

На эмиттеры классического дифференциального каскада с эмиттерными связями подаётся напряжение смещения от источника стабильного тока. Цепь отрицательной обратной связи вынуждает транзисторы работать как стабилизаторы напряжения, заставляя их изменять напряжение V бе таким образом, что бы ток мог протекать через переход коллектор-эмиттер. В результате ток покоя становится независимым от коэффициента передачи постоянного тока (β) транзисторов.

Сигналы с эмиттеров транзисторов Q1, Q2 поступают на эмиттеры транзисторов Q3, Q4. Их коллекторы разделены и они не могут использоваться для подачи тока покоя от источника стабильного тока, так как они сами функционируют, как источники тока. Следовательно, ток покоя можно подать только на базы, соединив их с источником тока. Что бы избежать зависимости от коэффициента передачи постоянного тока транзисторов, применяется отрицательная обратная связь. Для этого весь ток покоя отражается токовым зеркалом, выполненным на транзисторах Q8, Q9, а сигнал отрицательной обратной связи снимается с коллектора транзистора Q9. Это вынуждает транзисторы Q1-Q4 изменить их напряжения база-эмиттер V бе так, что бы через них протекал требуемый ток покоя. В результате получается тот же самый эффект, как у классической пары транзисторов с эмиттерной связью - величина тока покоя становится независимой от коэффициента передачи постоянного тока (β) транзисторов. Эта схема генерирует базовый ток необходимой величины, зависящий от β для того, что бы можно было получить β - независимый ток коллектора. Для получения токов смещения баз обычно используется источник питания отрицательного напряжения. Эти токи идут из общего провода в базы транзисторов.Но для получения максимально большого входного импеданса петли базового смещения не замкнуты внутри между базой и общим проводом, так как предполагается, что эти цепи будут замкнуты через выходное сопротивление источника сигнала на землю. Так что источник сигнала должен быть гальванически соединён с общим проводом, что бы через него могли протекать токи смещения, а так же он должен иметь достаточно низкое сопротивление (десятки или сотни килоом), что бы на нём не было бы существенного падения напряжения. В противном же случае можно подключить резисторы между базами транзисторов Q1, Q2 и общим проводом.

Величина тока покоя установлена резистором сопротивлением 39 кОм, который является общим для обоих токовых зеркал Q12-Q13 и Q10-Q11. Этот ток используется как образцовый для других токов смещения схемы. Транзисторы Q10, Q11 образуют , в котором через резистор сопротивлением 5 кОм протекает небольшая часть тока коллектора I ref транзистора Q10. Этот небольшой коллекторный ток, текущий через коллектор транзистора Q10 является опорным током баз для транзисторов Q3 и Q4, а так же для коллектора транзистора Q9. С помощью отрицательной обратной связи токовое зеркало на транзисторах Q8 и Q9 пытается сделать ток на коллекторе транзистора Q9 равный току коллекторов транзисторов Q3 и Q4. Напряжение на коллекторе транзистора Q9 будет изменяться до тех пор, пока отношение токов баз транзисторов Q3 и Q4 к токам их коллекторам не станет равным β. Следовательно общий базовый ток транзисторов Q3 и Q4 (это ток такого же порядка как и токи входов микросхемы) является небольшой частью слабого тока транзистора Q10.

Таким образом ток покоя устанавливается токовым зеркалом на транзисторах Q10, Q11 без использования токовой отрицательной обратной связи. Эта токовая обратная связь только стабилизирует напряжение коллектора транзистора Q9 (и базы транзисторов Q3, Q4). Кроме того, цепь обратной связи так же изолирует остальную часть схемы от синфазных сигналов путём установления напряжения базы транзисторов Q3, Q4 строго на уровне на 2V BE ниже, чем наибольшее из обоих входных напряжений.

Дифференциальный усилитель, образованный транзисторами Q1–Q4, соединён с активной нагрузкой на основе улучшенного токового зеркала на транзисторах Q5...Q7, которое преобразует токи входного дифференциального сигнала в напряжение, причём здесь для формирования этого напряжения используются оба входных сигнала, что даёт существенный прирост в усилении. Это достигается путём сложения входных сигналов с помощью токовых зеркал, в данном случае коллектор транзистора Q5 соединён с коллектором транзистора Q3 (левый выход дифференциального усилителя), а выход токового зеркала - коллектор транзистора Q6 соединён к правому выходу дифференциального усилителя - коллектору транзистора Q4. Транзистор Q7 увеличивает точность работы токового зеркала путём уменьшения отбираемого тока от транзистора Q3 для управления базами транзисторов Q5 и Q6.

Работа операционного усилителя

Дифференциальный режим

Напряжения источников сигналов, подаваемых на входы, проходят через две "диодных" цепочки, образованных переходами база-эмиттер транзисторов Q1, Q3 и Q2, Q4, к месту соединения баз транзисторов Q3, Q4. Если входные напряжения немного изменятся (напряжение на одном входе увеличится, а на другом уменьшится), то напряжение на базах транзисторов Q3, Q4 почти не изменится, так же общий ток баз останется без изменений. Произойдёт только перераспределение токов между базами транзисторов Q3, Q4, общий ток покоя останется тем же самым, токи коллекторов перераспределятся в тех же пропорциях, что и базовые токи.

Токовое зеркало произведёт инвертирование коллекторного тока, сигнал вернётся обратно на базу транзистора Q4. В точке соединения транзисторов Q4 и Q6 токи транзисторов Q3 и Q4 вычитаются. Эти токи противофазны в данном случае (в случае дифференциального сигнала). Следовательно, в результате вычитания токов токи сложатся (ΔI - (-ΔI) = 2ΔI), и преобразование из двухфазного сигнала в однофазный произойдёт без потерь. В схеме с разомкнутой петлёй обратной связи напряжение, полученное в точке соединения транзисторов Q4 и Q6 определяется результатом вычитания токов и общим сопротивлением схемы (параллельно включённые сопротивления коллекторов транзисторов Q4 и Q6). Так как для сигнальных токов эти сопротивления являются высокими (транзисторы Q4 и Q6 ведут себя как генераторы токов), то при разомкнутой петле обратной связи коэффициент усиления этого каскада будет очень высоким.

Иначе говоря, можно представить транзистор Q6 как копию транзистора Q3, а комбинацию транзисторов Q4 и Q6 можно представить как регулируемый делитель напряжения, состоящий из двух резисторов, управляемых напряжением. Для дифференциальных входных сигналов сопротивления этих резисторов будут сильно изменяться в противоположных направлениях, но общее сопротивление делителя напряжения останется неизменным (как у потенциометра с подвижным контактом). В результате ток не изменяется, но происходит сильное изменение напряжения в средней точке. Так как сопротивления изменяются в равной степени, но в противоположных направлениях, то результирующее изменение напряжения будет в два раза больше одиночных изменений напряжений.

Базовые токи на входах не нулевые, и поэтому эффективное входное сопротивление 741 операционного усилителя равно примерно 2 мОм. Выводы "установка нуля" могут быть использованы для подключения внешних резисторов параллельно внутренним резисторам сопротивлением 1 кОм (здесь обычно подключают потенциометр) для балансировки токов транзисторов Q5, Q6, таким образом косвенно регулируют сигнал на выходе при подаче на входы нулевых сигналов.

Режим подавления синфазного сигнала

Если входные напряжения изменяются синхронно, то отрицательная обратная связь вынуждает напряжение на базах транзисторов Q3, Q4 повторять (со смещением, равным удвоенному падению напряжения на переходах база-эмиттер транзисторов) вариации входных напряжений. Выходной транзистор Q10 токового зеркала Q10, Q11 поддерживает общий ток, протекающий через транзисторы Q8, Q9, постоянным и независимым от изменений напряжения. Токи коллекторов транзисторов Q3, Q4 и соответственно выходное напряжение в средней точке между транзисторами Q4 и Q6 остаются неизменными.

Последующая цепь отрицательной обратной связи эффективно увеличивает входное сопротивление операционного усилителя в режиме подавления синфазного сигнала.

Каскад усилителя, работающего в классе "А"

Каскад, выполненный на транзисторах Q15, Q19 Q22 работает в классе "А". Токовое зеркало, выполненное на транзисторах Q12, Q13 питает этот каскад стабильным током, независимым в широком диапазоне от вариаций выходного напряжения. Каскад основан на двух n-p-n транзисторах, Q15 и Q19, образующих так называемый составной транзистор дарлингтона , в коллекторе которого для получения большого усиления используется динамическая нагрузка в виде источника тока. Транзистор Q22 защищает усилительный каскад от насыщения путём шунтирования базы транзистора Q15, то есть действует как схема Бейкера .

Конденсатор ёмкостью 30 пФ в усилительном каскаде является цепью селективной обратной связи для частотной коррекции, которая позволяет стабилизировать операционный усилитель при работе в схемах с замкнутой цепью обратной связи. Это схемотехническое решение называется "компенсацией Миллера", принцип работы которого напоминает работу интегратора на операционном усилителе. Так же это схемотехническое решение известно под названием "коррекция доминирующего полюса", так как в частотную характеристику вводится доминирующий полюс, который подавляет другие полюса на амплитудно-частотной характеристике при разомкнутой петле обратной связи. Частота этого полюса может быть меньше 10 Гц в 741 усилителе, и на этой частоте полюс вносит затухание равное -3 дБ на амплитудно-частотной характеристике при разомкнутой петле обратной связи. Применение этой внутренней компенсации необходимо для получения абсолютной стабильности усилителя при работе с не реактивной отрицательной обратной связью в случае, когда коэффициент усиления операционного усилителя больше или равен единице. Таким образом не нужно использовать внешнюю коррекцию для обеспечения одинаковой стабильности при разных режимах работы, что существенно упрощает применение операционного усилителя. Те операционные усилители, в которых внутренняя коррекция отсутствует, например, К140УД1А, могут потребовать применения внешней коррекции или коэффициента усиления больше единицы при замкнутой петле обратной связи.

Схема смещения выходного каскада

Транзистор Q16 совместно с двумя резисторами образуют схему смещения уровня, известную так же под названиями "резиновый диод", "транзисторный стабилитрон" или умножитель напряжения перехода база-эмиттер (V BE). В данной схеме транзистор Q16 работает как стабилизатор напряжения, так как он обеспечивает постоянное падение напряжение на своём переходе коллектор-эмиттер при любых токах, протекающих через этот каскад. Это достигается введением отрицательной обратной связи между коллектором и базой в виде двухрезисторного делителя напряжения с коэффициентом деления β = 7,5 кОм / (4,5 кОм + 7,5 кОм) = 0,625. Предположим, ток базы транзистора равен нулю, следовательно отрицательная обратная связь вынуждает транзистор увеличить своё напряжение коллектор-эмиттер до примерно одного вольта до тех пор, пока напряжение база-эмиттер не достигнет типичной для биполярных транзисторов величины 0,6 вольт. Эта схема используется для смещения выходных транзисторов, при этом уменьшаются нелинейные искажения. В схемах некоторых усилителей низкой частоты для этого используют пару последовательно соединённых диодов.

Эту схему смещения можно представить как усилитель, охваченный отрицательной обратной связью с постоянным напряжением на входе, равным 0,625 вольт и коэффициентом обратной связи β = 0,625 (соответственно коэффициент усиления будет равен 1/β = 1,6). Такая же схема, но с β = 1 используется для установки рабочего тока в классической схеме токового зеркала на биполярных транзисторах.

Выходной каскад

Выходной каскад (транзисторы Q14, Q17, Q20) является двухтактным эмиттерным повторителем, работающим в классе "AB", смещение этого каскада устанавливается схемой смещения уровня, выполненной на транзисторе Q16 и двух резисторах, подключённых к базе этого транзистора. Сигнал на выходные транзисторы Q14, Q20 подаётся с коллекторов транзисторов Q13 и Q19. Вариации напряжения смещения, возникающие из-за изменений температуры, или из-за разброса параметров транзисторов, могут приводить к возникновению нелинейных искажений и к изменению тока покоя операционного усилителя. Выходное напряжение усилителя лежит в диапазоне на примерно один вольт меньше, чем питающие напряжения (т.е. от V - +1 до V + -1), оно частично определяется напряжением база-эмиттер выходных транзисторов Q14 и Q20.

Резистор сопротивлением 25 Ом в выходном каскаде работает как датчик тока для обеспечения ограничения максимально допустимого тока этого каскада, в операционном усилителе 741 этот резистор ограничивает выходной ток эмиттерного повторителя Q14 величиной 25 мА. Ограничение тока для нижнего по схеме эмиттерного повторителя реализовано с помощью резистора сопротивлением 50 Ом, установленного в цепи эмиттера транзистора Q19, с помощью транзистора Q22 напряжение на базе транзистора Q15 снижается при увеличении падения напряжения на резисторе выше критического. В более поздних моделях 741 операционного усилителя может использоваться немного другой метод ограничения выходного тока.

В отличии от идеального операционного усилителя, выходное сопротивление усилителя модели 741 не нулевое, но с применением отрицательной обратной связи на низких частотах оно становится почти нулевым.

Некоторые соображения по поводу 741 операционного усилителя

Примечание: исторически сложилось так, что операционный усилитель модели 741 используются в аудио и других высокочувствительных схемах, но сейчас этот усилитель применяется редко из-за более низкого уровня шума современных моделей операционных усилителей. Кроме сильного шума, 741 и другие старые модели могут плохо подавлять синфазный сигнал и часто принимать наводки от питающей сети и другие помехи.

Операционный усилитель модели 741 часто означает некий обобщённый операционный усилитель (например, μA741, LM301, 558, LM324, TBA221, или более современные модели, типа TL071). Описание выходного каскада усилителя 741 практически одинаково для многих других моделей (которые могут иметь абсолютно разные входные каскады), за исключением:

  • Некоторые модели операционных усилителей, такие как μA748, LM301, LM308 не имеют внутренней коррекции и требуют установки внешнего корректирующего конденсатора при работе в схемах с замкнутой петлёй обратной связи и с низким усилением.
  • У некоторых современных моделей операционных усилителей выходное напряжение может изменяться в диапазоне практически от отрицательного до положительного напряжения питания.

Классификация операционных усилителей

Операционные усилители могут быть классифицированы по типу их конструкций:

  • Дискретные - созданные из отдельных транзисторов или электронных ламп;
  • Микросхемные - интегральные операционные усилители наиболее распространены;
  • Гибридные - созданные на основе гибридных микросхем малой степени интеграции;

Интегральные операционные усилители могут быть классифицированы по разным параметрам, включая:

  • Подразделение на микросхемы военного, индустриального или коммерческого исполнения, отличающиеся надёжностью работы и стойкостью к внешним факторам (температуре, давлению, радиации), и следовательно, ценой. Пример: операционный усилитель общего исполнения LM301 является коммерческой версией модели LM101, а модель LM201 является индустриальной версией.
  • Классификация по типу корпуса - модели операционных усилителей в разных типах корпусов (пластик, металл, керамика) имеют так же различную стойкость к внешним факторам. Кроме того, корпуса бывают типа DIP и предназначенные для поверхностного монтажа (SMD).
  • Классификация по наличию или отсутствию цепей внутренней коррекции. Операционные усилители могут работать нестабильно в некоторых схемах с отрицательной обратной связью, что бы этого избежать используют конденсатор небольшой ёмкости для коррекции амплитудно-частотной характеристики. Операционный усилитель с таким встроенным конденсатором называют операционным усилителем с внутренней коррекцией.
  • В одном корпусе микросхемы может находиться один, два или четыре операционных усилителя.
  • Диапазон входных (и/или выходных) напряжений от отрицательного до положительного напряжения питания - операционный усилитель может работать с сигналами, величины которых лежат вблизи значений питающих напряжений.
  • Операционные усилители с КМОП - полевыми транзисторами на входах (например, модель AD8603) обеспечивают очень высокое входное сопротивление, выше чем у обычных операционных усилителей с полевыми транзисторами , у которых в свою очередь входное сопротивление больше, чем у операционных усилителей с биполярными транзисторами на входах.
  • Существуют так называемые "программируемые" операционные усилители, в которых с помощью внешнего резистора можно задавать ряд параметров, таких как ток покоя, усиление, полосу пропускания.
  • Производители часто разделяют операционные усилители по типу применения, например, малошумящие, предусилители, широкодиапазонные и т.д.

Применение операционных усилителей

Использование в конструкциях электронных систем

Назначение выводов операционного усилителя модели 741

Применение операционных усилителей в качестве блоков позволяет упростить создание схем и делает их чтение более лёгким, чем при использовании дискретных компонентов (транзисторов, резисторов, конденсаторов). При проектировании схем в первом приближении операционные усилители рассматривают как идеальные дифференциальные компоненты, и только при последующих шагах учитывают все неидеальности и ограничения этих устройств.

Для всех схем схемотехника остаётся той же самой. В спецификации указываются назначение схемы и требования к ней с соответствующими допусками. Например, требуется усиление 1000 раз с допуском 10% и дрейфом 2% в заданном диапазоне температур, входное сопротивление не менее 2 мОм и т.д.

При проектировании часто используют моделирование схем на компьютере, например, в программе схемотехнического моделирования LTSpice , в которй имеются некоторые модели коммерческих операционных усилителей и других компонентов. Если в результате моделирования выясняется, что некоторые параметры проектируемой схемы не удаётся реализовать, то в этом случае приходится корректировать спецификацию.

После компьютерного моделирования собирают опытный образец схемы и проводят его испытание, внося если надо изменения в схему для её улучшения или для того, что бы схема соответствовала спецификации. Так же проводят оптимизацию схемы для снижения её стоимости и улучшения функциональности.

Применение операционных усилителей в схемах без использования обратной связи

Компаратор напряжений на операционном усилителе 741 в схеме с однополярным питанием. V ref = 6,6 В, амплитуда входного сигнала V in = 8 В. Конденсатор С1 служит для подавления помех, поступающих по цепи питания.

В этом случае операционный усилитель используется как компаратор напряжения. Схема, предназначенная в первую очередь для работы в качестве компаратора применяется тогда, когда необходимо высокое быстродействие или широкий диапазон входных напряжений, так как усилитель может быстро восстанавливаться из режима насыщения.

Если на один из входов операционного усилителя подать образцовое напряжение V ref , то получится схема детектора уровня сигнала, то есть операционный усилитель будет детектировать положительный уровень сигнала. Если детектируемый сигнал подать на прямой вход, то получится схема неинвертирующего детектора уровня - когда входное напряжение будет выше опорного, то на выходе установится максимальное положительное напряжение. Если детектируемый сигнал и опорное напряжение поменять местами, то в этом случае на выходе операционного усилителя установится напряжение, близкое к отрицательному напряжению питания - получится схема инвертирующего детектора уровня.

Если образцовое непряжение на входе усилителя V ref = 0 В, то получится детектор нуля, который может преобразовывать, например, синусоидальный сигнал в прямоугольный.

Применение операционных усилителей в схемах с использования положительной обратной связи

Генератор прямоугольного сигнала на основе операционного усилителя с положительной (R1, R3) и отрицательной (R2, C1) цепями обратных связей. Цепь положительной обратной связи, охватывающая усилитель, превращает его в триггер Шмитта. Рабочая частота - примерно 150 Гц.

Операционные усилители применяют так же в схемах с положительной обратной связью, когда часть выходного сигнала подаётся на неинвертирующий вход. Одной из типичных схем, где используется такая конфигурация является схема компаратора с гистерезисом, это так называемый триггер Шмитта. В некоторых схемах могут одновременно использоваться два вида обратных связей - и положительная, и отрицательная, охватывающие один и тот же усилитель, такая конфигурация часто применяется в схемах генераторов пилообразного напряжения и в схемах активных фильтров.

Из-за низкой скорости нарастания сигнала и отсутствия положительной обратной связи, амплитудно-частотная характеристика описанных выше детектора нуля и детектора уровня сигнала, построенных по схеме с разомкнутой петлёй обратной связи, будет относительно низкочастотной, то есть схемы будут относительно низкочастотными. Можно попытаться охватить схему положительной обратной связью, но это существенно повлияет на точность работы при детектировании момента перехода входного сигнала через ноль. Если использовать обычный операционный усилитель типа 741, то преобразователь синусоидального напряжения в меандр скорее всего будет иметь рабочую частоту, не превышающую 100 Гц.

Для увеличения скорости нарастания сигнала в специализированных схемах компараторов в выходные каскады вводят положительную обратную связь, поэтому схемы детекторов уровня рекомендуется выполнять не на операционных усилителях, а на микросхемах - компараторах.

Применение операционного усилителя в схеме с отрицательной обратной связью

В схеме неинвертирующего усилителя выходное напряжение изменяется в том же направлении (уменьшается или увеличивается), что и входное.

Уравнение, определяющее усиление операционного усилителя записывается как

V out = A OL (V + - V -)

В этой схеме параметр V - является функцией от V out , так как резисторы R1 и R2 образуют цепь отрицательной обратной связи. Кроме того, эти резисторы являются делителем напряжения , а поскольку он соединён со входом V - , который является высокоомным, то делитель напряжения практически не нагружен. Следовательно:

V - = β * V out

где β = R1 / (R1 + R2)

Подставив это выражение в уравнение усиления операционного усилителя, получим:

V out = A OL (V in - β * V out)

Преобразовывая полученное выражение относительно V out , получаем:

V out = V in * (1 / (β + 1/A OL))

Если A OL очень большое, то уравнение упрощается:

V out ≈ V in / β = V in / (R1 / (R1 + R2)) = V in * (1 + R2/R1)

Обратите внимание, что сигнал на прямой вход операционного усилителя подаётся относительно общего провода. Если источник сигнала нельзя по какой-то причине подключать к общему проводу или же его следует подключать к нагрузке с определённым сопротивлением, то между прямым входом операционного усилителя и общим проводом потребуется установить дополнительный резистор. В любом случае, значение сопротивлений резисторов обратной связи R1 и R2, должно быть примерно равно входному сопротивлению с учётом нагрузочного резистора на прямом входе операционного усилителя, при этом сопротивления R1 и R2 следует рассматривать как включённые параллельно. То есть если R1 = R2 = 10 кОм, источник сигнала имеет высокое сопротивление, то дополнительный резистор между прямым входом и общим проводом должен иметь величину 5 кОм, в этом случае напряжение смещения на входах будет минимальным.

При включении операционного усилителя по инвертирующей схеме, напряжение на его выходе будет меняться в противофазе со входным напряжением.

Найдём уравнение, описывающее усиление при инверсном включении операционного усилителя:

V out = A OL (V + - V -)

Это уравнение точно такое же, как и уравнение для неинвертирующего усилителя. Но в данном случае параметр V - будет зависеть одновременно от выходного напряжения V out и входного V in , это вызвано тем, что делитель напряжения, образованный последовательно соединёнными резисторами R f и R in подключён между входным сигналом и выходом усилителя. Инвертирующий вход имеет высокое сопротивление и не нагружает делитель, следовательно:

V - = 1/(R f + R in) * (R f V in + R in V out)

Подставляя полученное равенство в уравнение усиления, находим V out :

V out = -V in * A OL R f / (R f + R in + A OL R in)

Если величина A OL очень большая, то выражение упрощается:

V out ≈ V in * R f / R in

Часто между неинвертирующим входом и общим проводом ставят резистор такой величины, что бы оба входа снимали напряжение с одинаковых сопротивлений. Применение этого резистора снижает напряжение смещения, и в некоторых моделях операционных усилителей снижает величину нелинейных искажений.

В случае, если нет нужды усиливать постоянное напряжение, то последовательно со входным резистором R in может быть установлен разделяющий конденсатор, блокирующий прохождение постоянного напряжения от источника сигнала на вход операционного усилителя.

Усилитель звуковой частоты на операционном усилителе

В заключение рассмотрим практическую схему усилителя звуковой частоты, выполненную по неинвертирующей схеме с однополярным питанием. Использование неинвертирующей схемы обеспечивает высокое входное сопротивление усилителя, которое определяется величинами сопротивлений R2 и R3, а так же входным сопротивлением прямого входа операционного усилителя (оно очень высокое и им можно пренебречь), при расчётах резисторы R2, R3 рассматривают как включённые параллельно, следовательно входное сопротивление усилителя будет равно 100 кОм.

Коэффициент усиления усилителя по напряжению определяется по формуле R4/R1 + 1 , в данном случае 49/1+1 = 50 раз. Ёмкость конденсатора С1 должна быть такой, что бы его реактивное сопротивление на самых низших рабочих частотах по крайней мере было бы раз в десять меньше, чем общее сопротивление последовательно включённых резисторов R1, R4. Конденсаторы С2, С3 являются разделительными по постоянному току, их параметры зависят от сопротивлений источника сигнала и нагрузки. Конденсатор С4 блокирует пульсации по цепи питания.

Нагрузкой усилителя могут служить высокоомные головные телефоны типа ТОН-2, соротивлением не менее 1,5 кОм. Для подключения низкоомных головных телефонов или динамической головки в схему потребуется добавить каскад эмиттерных повторителей на транзисторах КТ502 и КТ503.

Для уменьшения нелинейных искажений в схему добавлены резисторы R6, R7 задающие ток покоя транзисторов VT1, VT2. Можно использовать другую схему включения транзисторов, например, описанную , имеющую меньший уровень нелинейных искажений.

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ;) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас U вых = K*U вх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления;) И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

U out =(U 2 -U 1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях и про создание . Также компаратор замечательно используется для создания .

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:


Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:


В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U 1 , на инверсном входе U out = U 1 . Ну и получается, что U out = U 1 .

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:


Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U 1 на прямом. На инверсном U out /2 = U 1 или U out = 2*U 1 .

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

U out = U 1 *(1+R 1 /R 2)

Мнемонически запоминается что на что делится очень просто:

При этом получается, что входной сигнал идет по цепи резисторов R 2 , R 1 в U out . При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что U out =0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно U out . Делитель из R 1 и R 2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

U out = — U in * R 1 /R 2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Допустим U 2 и U 1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно:)

Если U 1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U 1 и U out станет 30 вольт. Ток через резистор R4 будет при этом (U 1 -U out)/(R 3 +R 4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R 4 составит R 4 *I 4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

U out = U 2 *K 2 — U 1 *K 1

K 2 = ((R 3 +R 4) * R 6) / (R 6 +R 5)*R 4
K 1 = R 3 /R 4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

U out = -1(R 3 *U 1 /R 1 + R 3 *U 2 /R 2)

Резисторы на входе (R 1 , R 2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И U out = -1(U 1 +U 2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.


Uout = U 1 *K 1 + U 2 *K 2

K 1 = R 5 /R 1
K 2 = R 5 /R 2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R 3 /R 4 = K 1 +K 2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками:)

Было показано, что при использовании операционного усилителя в различных схемах включения, усиление каскада на одном операционном усилителе (ОУ), зависит только от глубины обратной связи. Поэтому в формулах для определения усиления конкретной схемы не используется коэффициент усиления самого, если так можно выразиться, «голого» ОУ. То есть как раз тот огромный коэффициент, который указывается в справочниках.

Тогда вполне уместно задать вопрос: «Если от этого огромного «справочного» коэффициента не зависит конечный результат (усиление), тогда в чем же разница между ОУ с усилением в несколько тысяч раз, и с таким же ОУ, но с усилением в несколько сотен тысяч и даже миллионов?».

Ответ достаточно простой. И в том и в другом случае результат будет одинаковый, усиление каскада будет определяться элементами ООС, но во втором случае (ОУ с большим усилением) схема работает более стабильно, более точно, быстродействие таких схем намного выше. Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные.

Как уже было сказано свое название «операционные» рассматриваемые усилители получили в то далекое время, когда в основном применялись для выполнения математических операций в аналоговых вычислительных машинах (АВМ). Это были операции сложения, вычитания, умножения, деления, возведения в квадрат и еще множества других функций.

Эти допотопные ОУ выполнялись на электронных лампах, позднее на дискретных транзисторах и прочих радиодеталях. Естественно, габариты даже транзисторных ОУ были достаточно велики, чтобы использовать их в любительских конструкциях.

И только после того, как благодаря достижениям интегральной электроники, ОУ стали размером с обычный маломощный транзистор, то использование этих деталей в бытовой аппаратуре и любительских схемах стало оправданным.

Кстати, современные ОУ, даже достаточно высокого качества, по цене ненамного выше двух - трех транзисторов. Это утверждение касается ОУ общего применения. Прецизионные усилители могут стоить несколько дороже.

По поводу схем на ОУ сразу стоит сделать замечание, что все они рассчитаны на питание от двухполярного источника питания. Такой режим является для ОУ наиболее «привычным», позволяющим усиливать не только сигналы переменного напряжения, например синусоиду, но также и сигналы постоянного тока или попросту напряжение.

И все-таки достаточно часто питание схем на ОУ производится от однополярного источника. Правда, в этом случае не удается усилить постоянное напряжение. Но часто случается, что в этом просто нет необходимости. О схемах с однополярным питанием будет рассказано далее, а пока продолжим о схемах включения ОУ с двухполярным питанием.

Напряжение питания большинства ОУ чаще всего находится в пределах ±15В. Но это вовсе не значит, что это напряжение нельзя сделать несколько ниже (выше не рекомендуется). Многие ОУ весьма стабильно работают начиная от ±3В, а некоторые модели даже ±1,5В. Такая возможность указывается в технической документации (DataSheet).

Повторитель напряжения

Является самым простым по схемотехнике устройством на ОУ, его схема показана на рисунке 1.

Рисунок 1. Схема повторителя напряжения на операционном усилителе

Нетрудно видеть, что для создания такой схемы не понадобилось ни одной детали, кроме собственно ОУ. Правда, на рисунке не показано подключение питания, но такое начертание схем встречается сплошь и рядом. Единственное, что хотелось бы заметить, - между выводами питания ОУ (например для ОУ КР140УД708 это выводы 7 и 4) и общим проводом следует подключить емкостью 0,01…0,5мкФ.

Их назначение в том, чтобы сделать работу ОУ более стабильной, избавиться от самовозбуждения схемы по цепям питания. Конденсаторы должны быть подключены по возможности ближе к выводам питания микросхемы. Иногда один конденсатор подключается из расчета на группу из нескольких микросхем. Такие же конденсаторы можно увидеть и на платах с цифровыми микросхемами, назначение их то же самое.

Коэффициент усиления повторителя равен единице, или, сказать по- другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными.

Входное сопротивление повторителя на ОУ рассчитывается как произведение входного сопротивления ОУ на его же коэффициент усиления. Например, для упомянутого УД708 входное сопротивление составляет приблизительно 0,5МОм, коэффициент усиления как минимум 30 000, а может быть и более. Если эти числа перемножить, то входное сопротивление получается, 15ГОм, что сравнимо с сопротивлением не очень качественной изоляции, например бумаги. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем.

Чтобы описания не вызывали сомнения, ниже будут приведены рисунки, показывающие работу всех описываемых схем в программе - симуляторе Multisim. Конечно все эти схемы можно собрать на макетных платах, но ничуть не худшие результаты можно получить и на экране монитора.

Собственно, тут даже несколько лучше: совсем не надо лезть куда-то на полку, чтобы поменять резистор или микросхему. Здесь все, даже измерительные приборы, находится в программе, и «достается» при помощи мышки или клавиатуры.

На рисунке 2 показана схема повторителя, выполненная в программе Multisim.

Рисунок 2.

Исследование схемы провести достаточно просто. На вход повторителя от функционального генератора подан синусоидальный сигнал частотой 1КГц и амплитудой 2В, как показано на рисунке 3.

Рисунок 3.

Сигнал на входе и выходе повторителя наблюдается осциллографом: входной сигнал отображается лучом синего цвета, выходной луч - красный.

Рисунок 4.

А почему, спросит внимательный читатель, выходной (красный) сигнал в два раза больше входного синего? Все очень просто: при одинаковой чувствительности каналов осциллографа обе синусоиды с одной амплитудой и фазой сливаются в одну, прячутся друг за друга.

Для того чтобы разглядеть из сразу обе, пришлось снизить чувствительность одного из каналов, в данном случае входного. В результате синяя синусоида стала на экране ровно вдвое меньше, и перестала прятаться за красную. Хотя для достижения подобного результата можно просто сместить лучи органами управления осциллографа, оставив чувствительность каналов одинаковой.

Обе синусоиды расположены симметрично относительно оси времени, что говорит о том, что постоянная составляющая сигнала равна нулю. А что будет, если к входному сигналу добавить небольшую постоянную составляющую? Виртуальный генератор позволяет сдвинуть синусоиду по оси Y. Попробуем сдвинуть ее вверх на 500мВ.

Рисунок 5.

Что из этого получилось показано на рисунке 6.

Рисунок 6.

Заметно, что входная и выходная синусоиды поднялись вверх на полвольта, при этом ничуть не изменившись. Это говорит о том, что повторитель в точности передал и постоянную составляющую сигнала. Но чаще всего от этой постоянной составляющей стараются избавиться, сделать ее равной нулю, что позволяет избежать применения таких элементов схемы, как межкаскадные разделительные конденсаторы.

Повторитель это, конечно, хорошо и даже красиво: не понадобилось ни одной дополнительной детали (хотя бывают схемы повторителей и с незначительными «добавками»), но ведь усиления никакого не получили. Какой же это тогда усилитель? Чтобы получился усилитель достаточно добавить всего несколько деталей, как это сделать будет рассказано дальше.

Инвертирующий усилитель

Для того, чтобы из ОУ получился инвертирующий усилитель достаточно добавить всего два резистора. Что из этого получилось, показано на рисунке 7.

Рисунок 7. Схема инвертирующего усилителя

Коэффициент усиления такого усилителя рассчитывается по формуле K=-(R2/R1). Знак «минус» говорит не о том, что усилитель получился плохой, а всего лишь, что выходной сигнал будет противоположен по фазе входному. Недаром усилитель и называется инвертирующим. Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. Там тоже выходной сигнал на коллекторе транзистора находится в противофазе с входным сигналом, поданным на базу.

Вот тут как раз и стоит вспомнить, сколько усилий придется приложить, чтобы на коллекторе транзистора получить чистую неискаженную синусоиду. Требуется соответствующим образом подобрать смещение на базе транзистора. Это, как правило, достаточно сложно, зависит от множества параметров.

При использовании ОУ достаточно просто подсчитать сопротивление резисторов согласно формулы и получить заданный коэффициент усиления. Получается, что настройка схемы на ОУ намного проще, чем настройка нескольких транзисторных каскадов. Поэтому не надо бояться, что схема не заработает, не получится.

Рисунок 8.

Здесь все так же, как и на предыдущих рисунках: синим цветом показан входной сигнал, красным он же после усилителя. Все соответствует формуле K=-(R2/R1). Выходной сигнал находится в противофазе с входным (что соответствует знаку «минус» в формуле), и амплитуда выходного сигнала ровно в два раза больше входного. Что также справедливо при соотношении (R2/R1)=(20/10)=2. Чтобы сделать коэффициент усиления, например, 10 достаточно увеличить сопротивление резистора R2 до 100КОм.

На самом деле схема инвертирующего усилителя может быть несколько сложнее, такой вариант показан на рисунке 9.

Рисунок 9.

Здесь появилась новая деталь - резистор R3 (скорее она просто пропала из предыдущей схемы). Его назначение в компенсации входных токов реального ОУ с тем, чтобы уменьшить температурную нестабильность постоянной составляющей на выходе. Величину этого резистора выбирают по формуле R3=R1*R2/(R1+R2).

Современные высокостабильные ОУ допускают подключение неинвертирующего входа на общий провод напрямую без резистора R3. Хотя присутствие этого элемента ничего плохого и не сделает, но при теперешних масштабах производства, когда на всем экономят, этот резистор предпочитают не ставить.

Формулы для расчета инвертирующего усилителя показаны на рисунке 10. Почему на рисунке? Да просто для наглядности, в строке текста они смотрелись бы не так привычно и понятно, были бы не столь заметны.

Рисунок 10.

Про коэффициент усиления было сказано ранее. Здесь заслуживают внимания разве что входные и выходные сопротивления неинвертирующего усилителя. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке 11.

Буквой K” обозначен справочный коэффициент ОУ. Вот, пожалуйста, посчитайте чему будет равно выходное сопротивление. Получится достаточно маленькая цифра, даже для среднего ОУ типа УД7 при его K” равным не более 30 000. В данном случае это хорошо: ведь чем ниже выходное сопротивление каскада (это касается не только каскадов на ОУ), тем более мощную нагрузку, в разумных, конечно, пределах, к этому каскаду можно подключить.

Следует сделать отдельное замечание по поводу единицы в знаменателе формулы для расчета выходного сопротивления. Предположим, что соотношение R2/R1 будет, например, 100. Именно такое отношение получится в случае коэффициента усиления инвертирующего усилителя 100. Получается, что если эту единицу отбросить, то особо ничего не изменится. На самом деле это не совсем так.

Предположим, что сопротивление резистора R2 равно нулю, как в случае с повторителем. Тогда без единицы весь знаменатель превращается в нуль, и таким же нулевым будет выходное сопротивление. А если потом этот нуль окажется где-то в знаменателе формулы, как на него прикажете делить? Поэтому от этой вроде бы незначительной единицы избавиться просто невозможно.

В одной статье, даже достаточно большой, всего не написать. Поэтому придется все, что не уместилось рассказать в следующей статье. Там будет описание неинвертирующего усилителя, дифференциального усилителя, усилителя с однополярным питанием. Также будет приведено описание простых схем для проверки ОУ.