Как определить потери давления на диафрагме. Диафрагма (измерение расхода). Расчета диафрагмы для измерения расхода жидкости

  • Агрегатный индекс может быть преобразован а среднеарифметический и среднегармонический индекс при отсутствии исходной информации для расчета агрегатной формы индекса.
  • Аналитический метод расчета рабочих характеристик асинхронных двигателей
  • РАСЧЕТА ДИАФРАГМЫ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА СУХОГО ГАЗА И ПАРА;

    РАСЧЕТА ДИАФРАГМЫ ДЛЯ ИЗМЕРЕНИЯ ВЛАЖНОГО ГАЗА;

    РАСЧЕТА ДИАФРАГМЫ ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОСТИ;

    РАСЧЕТА РЕГУЛИРУЮЩЕГО ОРГАНА;

    ВЫБОРА ИСПОЛНИТЕЛЬНОГО МЕХАНИЗМА.

    К КУРСОВОМУ ПРОЕКТУ ПО СПЕЦДИСЦИПЛИНЕ

    «МОНТАЖ, НАЛАДКА И ЭКСПЛУАТАЦИЯ САУ»

    Для студентов специальности 220301. Автоматизация технологических

    Процессов и производств (по отраслям)

    Липецк 2010 г.

    СБОРНИК МЕТОДИК К КУРСОВОМУ ПРОЕКТУ ПО ДИСЦИПЛИНЕ

    «Монтаж, наладка и эксплуатация САУ»

    Сборник методик предназначен для студентов 4 курса очной формы обучения по специальности 220301. Автоматизация технологических процессов и производств (по отраслям).

    Составитель: Полякова Т. Ф.. – преподаватель спец. дисциплин

    Рецензент: _______Курлыкин А. Ф. Зам. начальника цеха КИП и А ОАО «НЛМК»

    Одобрено методическим советом Липецкого металлургического колледжа и рекомендовано к применению для студентов в качестве методических указаний по разработке курсового проекта по спец. дисциплине «Монтаж, наладка и эксплуатация САУ».

    Лист
    Введение
    1. Расчет диафрагмы для измерения расхода сухого газа и пара
    1.1 Необходимые исходные данные
    1.2 Определение недостающих для расчета данных
    1.3 Определение параметров диафрагмы
    1.4 Проверка расчета
    2. Расчет диафрагмы для измерения расхода влажного газа
    2.1 Необходимые исходные данные
    2.2 Определение недостающих для расчета данных
    2.3 Определение параметров диафрагмы
    2.4 Проверка расчета
    3.Расчет диафрагмы для измерения расхода жидкости
    3.1 Необходимые исходные данные
    3.2 Определение недостающих для расчета данных
    3.3 Определение параметров диафрагмы
    3.4 Проверка расчета
    Приложение А
    4. Расчет регулирующего органа
    4.1 Расчет по пропускной способности
    4.2 Определение условного диаметра регулирующего органа
    4.3Определение рабочей характеристики
    5 Выбор исполнительного механизма
    Список использованных источников
    Приложение В
    Приложение С
    Приложение Д
    Приложение Е

    Введение



    Дисциплина «Монтаж, наладка и эксплуатация САУ» является одной из базовых при обучении на специальности 220301 (2101) «Автоматизация технологических процессов и производств»). Изучая ее, студент должен знать основные компоненты САР принцип работы всех компонентов и структуру взаимосвязи между всеми компонентами. Для качественного закрепления изучаемого материала и приобретения практических навыков предусматривается выполнение индивидуального курсового проекта.

    Конечной целью курсового проекта является построение САР расхода вещества, реализованную на конкретной элементной базе и направленную на выполнение определенных задач, что определяется заданием на курсовое проектирование и индивидуальным дополнительным заданием. Кроме расчетов, в курсовом проекте обязательным является разработка Схемы автоматизации и Схемы принципиальной электрической (Пневматической), технологическое программирование САР. Курсовой проект выполняется индивидуально на основании лекционного, справочного и другого дополнительного материалов. Курсовой проект рассчитан на 30 часов. Во время выполнения проекта предусматривается 20 часов консультаций. Для оценки успеваемости студентов выполнение работы разбивается на этапы, где каждый этап является логически завершенным заданием:



    первый этап – выполнение расчетных задач;

    второй этап – разработка Схемы автоматизации;

    третий этап – разработка Схемы принципиальной электрической (Пневматической);

    четвертый этап – разработка технологического программирования САР расхода вещества.


    Методика расчета диафрагмы для измерения расхода сухого газа и пара.

    (согласно Правилам РД 50-213-80)

    Таблица 1.1 - Необходимые исходные данные

    Задано и принято Обозначение параметра Единица измерения
    Максимальный расход измеряемой среды Для газа (объемный расход, приведенный к нормальным условиям): Для пара (массовый расход) Q ном. max Q м. max м 3 /час кг/час
    Средний расход измеряемой среды Для газа: Для пара: Q ном.ср Q м. ср м 3 /час кг/час
    Молярная концентрация компонентов сухой газовой смеси 1-й компонент (название): 2-й компонент (название): * * n-й компонент (название): N 1 N 2 * * N n доля ед. доля ед. * * доля ед.
    Температура среды перед диафрагмой: t ºС
    Избыточное давление перед диафрагмой: Р и кгс/см 2
    Среднее барометрическое давление: Р б мм рт.ст.
    Допустимая потеря давления при Q max Р′ п кгс/см 2
    Внутренний диаметр трубопровода при t=20ºС D 20 мм
    Абсолютная шероховатость трубопровода δ
    Имеющаяся длина прямолинейного участка трубопровода: L пт
    Тип местного сопротивления в начале прямолинейного участка трубопровода: -
    Материал трубопровода -
    Материал диафрагмы -
    Тип дифманометра -

    Примечание 1. Сумма молярных концентраций всех компонентов газовой смеси должна равняться 1.

    Примечание 2. Абсолютная шероховатость трубопровода зависит от материала и состояния внутренней поверхности трубопровода. При отсутствии данных можно принять значение абсолютной шероховатости согласно (Приложению А п. 1).

    Примечание 3. Вместо допустимой потери давления при максимальном расходе (таблица 1.1 «Необходимые исходные данные») может быть задан предельный номинальный перепад давления дифманометра ΔР н. Значения ΔР н выбираются из ряда чисел, установленных стандартом, согласно выражению:

    ΔР н = n 1 · 10 х, где х – целое число, n 1 – 1; 1,6; 2,5; 4; 6,3.

    Примечание 4. При отсутствии данных о материале диафрагмы следует принять одну из следующих марок нержавеющей стали Х23Н13, Х18Н25С2, 1Х18Н9Т.

    Диафрагма (измерение расхода)

    Схема установленной диафрагмы в кольцевой камере (которая в свою очередь вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

    где
    = объёмный расход (at any cross-section), м³/с
    = массовый расход (at any cross-section), кг/с
    = коэффициент истечения, безразмерная величина
    = коэффициент расхода, безразмерная величина
    = площадь сечения трубы, м²
    = площадь
    = диаметр трубы, м
    = диаметр отверстия в диафрагме, м
    = соотношение диаметров трубы и отверстия в диафрагме, безразмерная величина
    = скорость жидкости до диафрагмы, м/с
    = скорость жидкости внутри диафрагмы, м/с
    = давление жидкости до диафрагмы, Па (кг/(м·с²))
    = давление жидкости после диафрагмы, Па (кг/(м·с²))
    = плотность жидкости, кг/м³.

    Течение газа через диафрагму

    В основном, уравнение (2) применимо только для несжимаемых жидкостей. Но оно может быть модифицировано введением коэффициента расширения с целью учёта сжимаемости газов.

    Равен 1.0 для несжимаемых жидкостей и может быть вычислен для газов.

    Расчёт коэффициента расширения

    Коэффициент расширения , который позволяет отследить изменение плотности идеального газа при изоэнтропийном процессе , может быть найден как:

    Для значений менее чем 0.25, стремится к 0, что приводит к обращению последнего члена в 1. Таким образом, для большинства диафрагм справедливо выражение:

    где
    = коэффициент расширения, безразмерная величина
    =
    = отношение теплоёмкостей (), безразмерная величина.

    Подставив уравнение (4) в выражение для массового расхода (3) получим:

    Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

    Помня что и (уравнение состояния реального газа с учётом фактора сжимаемости)

    где
    = отношение теплоёмкостей (), безразмерная величина
    = массовый расход в произвольном сечении, кг/с
    = расход реального газа до диафрагмы, м³/с
    = расходный коэффициент диафрагмы, безразмерная величина
    = площадь сечения отверстия в диафрагме, м²
    =

    Всесторонние исследования сужающих устройств дали возможность нормализовать диафрагмы, сопла и сопла Вентури, что позволило изготовлять и применять их в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и паров в горизонтальных, наклонных и вертикальных круглых трубопроводах по результатам расчета без индивидуальной градуировки. При изготовлении и установке стандартных сужающих устройств в трубопроводах должны соблюдаться определенные требования, основные из которых рассматриваются ниже 1.

    Диафрагма. Стандартная диафрагма может применяться без градуировки в трубопроводах диаметром при

    одновременном соблюдении условия Диафрагма является наиболее простой конструкцией из числа сужающих устройств.

    Стандартная диафрагма схематически показана на рис, 14-2-1. Она представляет собой тонкий диск, имеющий круглое отверстие диаметром центр которого совпадает с центром сечения трубы. Отверстие диафрагмы цилиндрической формы со стороны входа потока имеет прямоугольную кромку. Длина цилиндрического отверстия а должна находиться в пределах а при длина должна равняться примерно При толщине диафрагмы цилиндрическое отверстие должно выполняться с коническим расширением к выходу потока (рис.

    14-2-1, а). Угол наклона, образующий конус к оси диафрагмы, должен лежать в пределах от 30 до 45°. В тех случаях, когда толщина можно изготовлять диафрагму и без конического расширения со стороны выхода потока (рис. 14-2-1, б), что имеет место обычно для больших диаметров трубопроводов и при небольших давлениях среды.

    Рис. 14-2-1. Стандартная диафрагма (стрелкой показано направление потока). а - с коническим расширением к выходу потока; б - без конического расширения со стороны выхода потока.

    Толщина стандартной диафрагмы не должна превышать . В большинстве случаев при применении диафрагм нецелесообразно иметь толщину ее менее и больше Наименьшая необходимая толщина диска при перепаде давления должна определяться расчетным путем, исходя из условий механической прочности диафрагмы .

    Шероховатость поверхностей диафрагмы должна соответствовать классам чистоты, указанным на рис. 14-2-1. На входной и выходной кромках отверстия диафрагмы не должно быть зазубрин, заусенцев и т. п. Особое внимание при изготовлении диафрагмы должно быть обращено на обработку входной кромки: она должна быть острой и не должна иметь закруглений, царапин и т. п. Точность выполнения входной кромки диафрагмы должна увеличиваться с уменьшением диаметра отверстия . У диафрагм, диаметр отверстия которых не превышает острота кромки должна быть такой, чтобы падающий на нее луч света не давал отражения. Если то луч света может отражаться, но кромка не должна иметь заметного невооруженным глазом притупления.

    Отбор давлений можно осуществлять при помощи отдельных цилиндрических отверстий в обойме (рис. 14-2-2), кольцевых камер, каждая из которых соединяется с внутренней полостью

    трубопровода группой равномерно расположенных по окружности прямоугольных отверстий (рис. 14-2-3).

    Диафрагмы с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока или в тех случаях, когда поток не вполне симметричен благодаря наличию изгибов трубопровода или других препятствий. Следует также отметить, что кольцевые камеры, способствующие выравниванию давления, позволяют более точно измерять перепад давления при меньших длинах прямых участков, чем отдельные отверстия.

    Диафрагма в обойме с отдельными отверстиями.

    Рис. 14-2-3. Диафрагма с кольцевыми камерами.

    Отбор давлений можно также осуществлять при помощи кольцевых камер, образованных полостью двух трубок, согнутых вокруг трубопровода в кольцо или прямоугольник. Такой способ рекомендуется применять при давлениях среды в трубопроводах с условным диаметром

    Диафрагма с отбором давлений с помощью двух отдельных отверстий в трубопроводе или «теле» каждого из фланцев (см. рис. 14-2-1, б) может быть использована в трубопроводах с условным диаметром от 450 до при рабочих давлениях и температурах, соответствующих условным давлениям до

    Для обеспечения выравнивания давления в кольцевой камере диафрагмы необходимо, чтобы площадь диаметрального сечения камеры, определенная по одну сторону от оси трубопровода, была не менее половины площади группы отверстий, соединяющих камеру с внутренней полостью трубопровода.

    Таким образом для кольцевой камеры, выполненной по схеме рис. 14-2-3,

    где число отверстий; площадь одного отверстия, которая должна быть не менее

    Определяя ширину кольцевой щели с при наличии прокладки у камерной диафрагмы, необходимо учитывать сжимаемость прокладки. Если кольцевая камера соединяется с внутренней полостью трубопровода группой отверстий при наличии кольцевой щели, обусловленной установкой прокладки, то при определении необходимой площади площадь щели, остающейся после сжатия прокладки, должна учитываться, если ширина этой щели превышает

    Для кольцевой камеры, выполненной из согнутых вокруг трубопровода трубок, площадь определяется по формуле

    где внутренний диаметр трубки, образующий кольцо или прямоугольник.

    Число отверстий, соединяющих каждую кольцевую камеру с полостью трубопровода (рис. 14-2-3), должно быть не менее 4. Диаметр отверстия или ширина кольцевой щели, соединяющих камеру с трубопроводом, и диаметр отдельного отверстия (размер с) не должны превышать при а при должны находиться в пределах Нижний предел размера с, равный допускается только для

    Кроме того, должны соблюдаться следующие условия: для чистых жидкостей и газов при измерении перепада давления через отдельные отверстия и кольцевые камеры 1 с для паров, влажных газов и жидкостей, которые могут испаряться в соединительных (импульсных) линиях, при измерении перепада давления через кольцевые камеры, 1 с а при измерении через отдельные отверстия Обычно диаметр отдельного отверстия выполняют не менее для чистых жидкостей и газов и не менее в остальных случаях. Следует отметить, что при совместное удовлетворение указанных выше требований при изготовлении диафрагм с отдельными отверстиями затруднительно. Поэтому в таких случаях лучше применять камерные диафрагмы.

    Внутреннюю кромку отверстия (в кольцевой камере, обойме, фланце или трубопроводе) рекомендуется закруглять по радиусу, не превышающему 0,1 с, кроме того, кромка должна быть без заусенцев. Толщина I стенки корпуса кольцевой камеры (рис. 14-2-3) или длина цилиндрической части отдельного отверстия (рис. 14-2-2) должна быть не менее 2 с.

    Отклонение действительного диаметра отверстия диафрагмы от среднего значения, определенное не менее чем в четырех равно отстоящих друг от друга диаметральных направлениях, не должно превышать 0,05% При допускается отклонение в 0,1% Указанные допуски на диаметр проходного отверстия диафрагмы остаются в силе для сопл и сопл Вентури, рассматриваемых ниже. При этом для них диаметр должен определяться в начале и в конце цилиндрической части отверстия. Внутренний диаметр корпуса кольцевой камеры (рис. 14-2-3) или обоймы (рис. 14-2-2) должен быть равен (с допустимым отклонением диаметру трубопровода, принятому для расчета диафрагмы, сопла или сопла Вентури.

    Стандартные диафрагмы с кольцевыми камерами типа (рис. 14-2-3), предназначенные для трубопроводов с условными проходами и рабочих давлений и температур, соответствующих условным давлениям до должны изготовляться по ГОСТ 14321-73.

    Рис. 14-2-4. Стандартная диафрагма с кольцевыми камерами в патрубках со сварным соединением.

    Диафрагмы бескамерные, предназначенные для трубопроводов с условными проходами , на условные давления до изготовляют по ГОСТ 14322-69.

    На рис. 14-2-4 показан пример конструктивного выполнения стандартной диафрагмы с кольцевыми камерами в патрубках со сварным соединением, внутренний диаметр которых принимается равным внутреннему диаметру трубопровода. Сварные соединения с измерительными диафрагмами, применяемые для неагрессивных сред, предназначены для рабочих давлений и температур, соответствующих условным давлениям от 100 до Кольцевые камеры соединяются с внутренними полостями

    патрубков с помощью восьми прямоугольных отверстии, равномерно распределенных по окружности.

    Диафрагмы этого типа широко применяются на тепловых электрических стйнциях высокого давления, например, для измерения расхода питательной воды парогенераторов. Сварная конструкция диафрагм может быть использована на атомных электрических станциях и на других промышленных предприятиях.

    Сопло. Стандартное сопло, схематически показанное на рис. 14-2-5, может применяться без градуировки в трубопроводах диаметром при одновременном соблюдении условия Профильная часть отверстия сопла со стороны входа потока должна быть выполнена с плавным сопряжением дуг радиусами

    Рис. 14-2-5. Стандартное сопло. а - для ; б - для Размеры:

    Дуга, проведенная радиусом должна сопрягаться с выходной цилиндрической частью сопла. У сопла (рис. 14-2-5, б) дуга, проведенная радиусом доходит только до точки на торце сопла, лежащей на диаметре Отклонение радиусов дуг от номинальных значений не должно превышать 10% при 0,25 и 3% при

    На выходе цилиндрическая часть отверстия сопла должна заканчиваться расточкой предохраняющей выходную кромку от повреждений. Выходная кромка должна быть острой и не должка иметь закруглений, фасок, заусенцев и т. п. Шероховатость рабочих поверхностей сопла должна соответствовать классам чистоты, указанным на рис. 14-2-5. Значения любых двух диаметров, полученные при измерении в плоскости, перпендикулярной к оси сопла, не должны отличаться от среднего значения более чем на 0,1%.

    Измерение перепада давления в сопле может производиться через две кольцевые камеры или через отдельные цилиндрические отверстия. Отбор давлений через кольцевые камеры, как отмечалось выше, более предпочтителен, чем отбор давлений через отдельные отверстия. Требования, предъявляемые к устройству кольцевых камер и выполнению отверстий (размер с) для отбора давлений, те же, что и для диафрагм. Поэтому при изготовлении кольцевых камер или отдельных отверстий необходимо руководствоваться указаниями, изложенными выше при рассмотрении диафрагм.

    На рис. 14-2-6 показан пример конструктивного выполнения стандартного сопла с кольцевыми камерами в патрубках со сварным соединением, внутренний диаметр которых должен быть равен

    внутреннему диаметру трубопровода. Сварные соединения этого типа с измерительными соплами, применяемые для неагрессивных сред, предназначены для рабочих давлений и температур, соответствующих условным давлениям от Кольцевые камеры соединяются с внутренними полостями патрубков с помощью восьми прямоугольных отверстий, равномерно распределенных по окружности.

    Рис. 14-2-6. Стандартное сопло с кольцевыми камерами в патрубках со сварным соединением .

    Сварные соединения с измерительными соплами широко применяются на тепловых электрических станциях для измерения расхода перегретого водяного пара высокого давления.

    Сопла этого типа могут быть использованы также на атомных электрических станциях и в других отраслях промышленности.

    Сопло менее чувствительно к загрязнению и коррозии. Загрязнение или незначительное изменение входного профиля сужающего устройства в процессе эксплуатации влияет на коэффициент расхода сопла в значительно меньшей степени, чем на коэффициент расхода диафрагмы. При одних и тех же значениях и перепадах давления сопло позволяет измерять больший расход вещества, чем диафрагма. Кроме того, при измерении расхода пара и газа сопло обеспечивает более высокую точность измерения по сравнению с диафрагмой.

    Рис. 14-2-7. Стандартное сопло Вентури для (верхняя половина - короткое, нижняя половина - длинное).

    Сопло Вентури. Из числа существующих форм труб Вентури нормализована труба с входной частью, выполненной так же, как и стандартное сопло. Поэтому сужающее устройство этого типа получило название стандартное сопло Вентури. Оно может быть изготовлено с длинным и коротким диффузором (конусом). У длинного сопла Вентури диффузор на выходе имеет диаметр, равный диаметру трубопровода (рис. 14-2-7, нижняя часть). Короткое сопло Вентури имеет диаметр на выходе у диффузора меньше диаметра трубопровода (рис. 14-2-7, верхняя часть). Сопло Вентури, профили которого показаны на рис. 14-2-7, может применяться без градуировки для измерения расхода различных сред в трубопроводах Диаметром при одновременном соблюдении условия

    И не быть меньше

    Рис. 14-2-8. Потеря давления в сужающем устройстве. 1 - диафрагма; 2 - сопло; 3 - короткое сопло Веитури любое значение); 4 - длинное сопло Вентури длинное сопло Вентури .

    Кольцевая камера для отбора давления соединяется с внутренней полостью трубы с помощью кольцевой щели или группы отверстий, равномерно расположенных по окружности. Требования, предъявляемые к устройству кольцевых камер для отбора давлений, те же, что и для диафрагм.

    Потеря давления. При выборе сужающего устройства следует считаться с потерей давления измеряемой среды, так как давление за сужающим устройством, как видно из рис. 14-1-1, полностью не восстанавливается. Потерю давления измеряемой среды, протекающей через сужающее устройство, определяют как разность статических давлений, измеренных в двух ближайших поперечных сечениях, в которых как до, так и после сужающего устройства не наблюдается его влияния на характер потока. Потеря давления в сужающем устройстве обычно выражается в долях или процентах перепада давления

    Зависимость потери давления от и типа сужающего устройства в долях от перепада давления приведена на рис. 14-2-8. Из графика видно, что при одном и том же значении потеря давления в диафрагме больше, чем в сопле. Однако следует отметить, что при равных перепадах давления для одного и того же расхода среды значение для диафрагмы больше, чем для сопла, поэтому практически потеря давления при использовании диафрагм и сопл приблизительно одинакова.

    У сопла Вентури главным образом благодаря наличию на выходе диффузора, способствующего более полному восстановлению потенциальной энергии потока, потеря давления значительно меньше, чем у диафрагмы и сопла. Сопло Вентури рекомендуется

    применять в тех случаях, когда в промышленных установках при измерении расхода вещества большие потери давления недопустимы. Потеря давления в коротком сопле Вентури сравнительно небольшая, если выходной диаметр диффузора составляет не менее

    Расчет расходомеров переменного перепада давления сводится к определению диаметра отверстия и других размеров сопла или диафрагмы, коэффициента расхода, динамического диапазона из­мерения, определяемого числами Рейнольдса, перепада давления и потерь давления на сужающем устройстве, поправочного мно­жителя на расширение, а также погрешности измерения расхода газа. Для расчета должны быть заданы максимальный (предель­ный), средний и минимальный расходы, диапазоны изменения дав­ления и температуры газа, внутренний диаметр и материал изме­рительного трубопровода, состав газа или его плотность при нор­мальных условиях, допустимые потери давления или предельный перепад давления, соответствующий максимальному расходу, а также среднее барометрическое давление в месте установки дифманометра-расходомера.

    Методика расчета. Перед началом расчета выбираем типы и классы точности дифманометра-расходомера, манометра и термо­метра. Расчет проводится следующим образом.

    1. Определяем округленный до трех значащих цифр вспомога­тельный коэффициент С при подстановке в нее значения максимального (предельного) расхода Q н. пр , темпера­туры и давления, плотности газа при нормальных условиях ρ н , коэффициента сжимаемости Z и диаметра измерительного трубо­провода D :

    При найденном значении С возможны два вида расчета: по заданному перепаду давления или по заданным потерям давления. Если задан предельный перепад давления Δр пр , то по номограмме рис. 11 определяем предварительное относительное сужение m (модуль) сужающего устройства по найденному коэффициенту С и заданному предельному перепаду давления на сужающем устройстве Δр пр , . Найденное предварительное значение модуля m подставляем в формулу по определению тα и вычисляем предварительный коэффициент расхода α .

    2. Вычисляем с точностью до четырех значащих цифр вспомогательный коэффициент

    где ε - поправочный множитель на расширение газа для верхнего предельного перепада давле­ния дифманометра Δр пр , ; Δр пр , - верхний предельный перепад дав­ления на сужающем устройстве, кгс/м 2 .

    3. Определяем уточненное значение модуля m с точностью до четырех значащих цифр по формуле

    m = mα/α .

    4. По уточненному значению модуля m нахо­дим новое значение поправочного множителя на расширение е и вычисляем разность между первоначально вычисленным значени­ем ε и уточненным. Если эта разность не превышает 0,0005, то вычисленные значения m и ε считаются окончательными.

    5. Определяем диаметр d отверстия диафрагмы при оконча­тельно выбранном m

    6. Найденные значения коэффициентов расхода α , поправоч­ного множителя на расширение ε , диаметра d отверстия диафраг­мы, а также Δр пр , р 1 , Т 1 , р н и Z используем для определения расхода газа и проверяем расчет пре­дельного расхода газа Q н. пр . Полученное значение Q н. пр . не долж­но отличаться от заданного более чем на 0,2 %. Если найденное значение предельного расхода газа отличается от заданного бо­лее чем на 0,2 %, то расчет повторяется до получения требуемой погрешности расчета предельного расхода газа и параметров диа­фрагмы.

    7. Определяем новые уточненные значения модуля m , диамет­ра d отверстия диафрагмы, а также коэффициента расхода α и повторно рассчитываем. Если уточненное расчетное значение предельного расхода газа не отличается от за­данного более чем на 0,2 %, то уточненные значения m , d и α , фик­сируются в расчетном листе сужающего устройства.

    8. Рассчитываем минимальное и максимальное числа Рейнольдса и сравниваем минимальное число Рейнольдса с граничными значениями

    9. Определяем толщину диафрагмы Е , ши­рину цилиндрической части диафрагмы е ц , ши­рину кольцевой щели с , а также размеры коль­цевых камер a и b .

    10. Выбираем длины прямых участков измерительных трубо­проводов до и после диафрагмы.

    11. Рассчитываем погрешность измерения расхода

    Полученные данные фиксируются в расчетном листе сужающего устройства и являются основой для его изготовления и мон­тажа.

    Блок учета газа

    Предназначен для коммерческого учета газа (измерения его расхода). Число линий измерения зависит в основном от числа выходных газопроводов из ГРС. Техническое выполнение блоков измерения расхода газа должно соответствовать «Правилам изме­рения расхода газов и жидкостей стандартными сужающими ус­тройствами» РД50-213-80.

    Отношение площади отверстия сужающего устройства F 0 к пло­щади поперечного сечения газопровода F Г называется модулем т (или относительной площадью): m = F 0 /F Г .

    На газопроводах в качестве сужающего устройства применяют диафрагму диаметром не менее 50 мм при условии, что ее модуль имеет следующие пределы:

    m = 0,05-0,64 - для диафрагм с угловым способом отбора перепада давления и газопроводов с D у = 500-1000 мм;

    т = 0,04 - 0,56 - для диафрагм с фланцевым способом отбора перепада давления и газопроводов с D y = 50 -760 мм.

    Рис. 27 - График температура-энтальпия природного газа

    Чем меньше модуль, тем выше точность измерения расхода газа, но при этом больше потери давления Δр в диафрагме.

    Диаметр отверстия диафрагмы независимо от способа перепада давления принимают d ≥ 12,5 мм, а отношение абсолютного давления на выходе из диафрагмы и на входе в нее ≥0,75.

    В газопроводе вблизи диафрагмы необходимо соблюдать следу­ющие условия:

    1) должно быть обеспечено турбулентное и стационарное дви­жение потока газа на прямых участках;

    2) не должны иметь место изменения фазового состояния потока газа, например конденсация паров с последующим выпадением конденсата;

    3) не должны скапливаться внутри прямых участков газопровода осадки в виде пыли, песка и т. п.;

    4) не должны образовываться на диафрагме отложения (напри­мер, кристаллогидраты), изменяющие ее конструктивные параметры.

    Однако на внутренней стенке газопровода, в месте установки сужающего устройства, отложение твердых кристаллогидратов впол­не возможно. И это приводит к появлению существенной погрешности измерения расхода газа и снижению пропускной способности тру­бопровода, а также к закупорке импульсных линий.

    При проектировании узла учета газа ГРС, работающего в режиме гидратообразования, необходимо предусмотреть меры, исключающие гидратообразование. Предупредить их возникновение можно с по­мощью подогрева газа, ввода в газопровод ингибиторов, продувки сужающего устройства. В газопроводе следует предусматривать отверстие для удаления осадков или конденсата. Диаметр такого отверстия не должен превышать 0.08D 20 , а расстояние от него до отверстия для измерения перепада давления должно быть не менее D 20 или найдено по табл. 6. Оси этих отверстий не следует распо­лагать в одной плоскости, проходящей через ось трубы.

    Между местным сопротивлением на газопроводе и диафрагмой должен быть прямой участок, под длиной которого понимают расстояние между торцевыми поверхностями диафрагмы и мес­тного сопротивления (рис. 28). Границей местных сопротивлений считают:

    1) для колена - сечение, проходящее перпендикулярно к оси газопровода через центр радиуса изгиба;

    2) для вварных сужений и расширений - сварной шов;

    3) для тройника под острым углом или разветвляющегося по­тока - сечение, расположенное на расстоянии двух диаметров от точки пересечения осей трубопроводов;

    4) для вварной группы колен - сечение, находящееся на рас­стоянии одного диаметра от сварного шва ближайшею к диафрагме колена.

    Рис 28. Схема установки диафрагмы 1 - манометр, 2 - термометр, 3 - местное сопротивлние

    В соответствии с требованиями Правил РД50-213-80 измери­тельный участок газопровода должен быть прямым и цилиндричес­ким, с круглым сечением Действительный внутренний диаметр участка перед диафрагмой определяют как среднее арифметическое результатов измерений в двух поперечных сечениях непосредственно у диафрагмы и на расстоянии от нее 2D 20 , причем в каждом из сечений не менее чем в четырех диаметральных направлениях Результаты отдельных измерений не должны отличаться от среднего значения более, чем на 0,3% Внутренний диаметр участка на длине 2D 20 после диафрагмы может отличаться от внутреннего диаметра участка до диафрагмы не более чем на ±2%.

    Предельные отклонения по внутреннему диаметру труб не должны превышать соответству­ющих предельных отклонений по наружному диаметру, т. е. ±0,8%. Допускается сопряжение отверстий фланца и трубопровода по конусу, имеющему уклон в сторону диафрагмы не более 1:10 и плавные скругления на концах.

    Уплотнительные прокладки между диафрагмой и фланцами не должны выступать во внутреннюю полость газопровода. При уста­новке диафрагмы между насадными фланцами конец газопровода должен непосредственно примыкать к ней.

    Температуру за сужающим устройством измеряют на расстоянии не менее 5D 20 , но не более 10D 20 от его заднего торца. Диаметр гильзы термометра не должен превышать 0,13D 20 . Глубина погру­жения гильзы термометра (0,3 - 0,5)D 20 .

    Внутренняя кромка отверстия для отбора давления в газопроводе, во фланце и в камере не должна иметь заусенцев, рекомендуется ее закруглить по радиусу r = 0,ld отверстия. Угол между осями отверстия и камерной диафрагмы 90°.

    Размер d (диаметр отдельного отверстия) при модуле т < 0,45 не должен превышать 0,03D 20 , а при модуле m > 0,45 находиться в пределах 0,01D 20 d < 0.02D 20 .

    Если расстояние между коленами превышает 15D 20 , то каждое колено считается единичным; если же оно меньше 15D 20 , то данную группу колен рассматривают как одноместное сопротивление данного типа. При этом внутренний радиус кривизны колен должен быть равен диаметру трубопровода или больше его. Сокращенная длина прямого участка перед диафрагмой для любого типа сопротивлений, кроме гильзы термометра, должна быть менее 10D 20 .

    Расход газа в общем виде

    где Q M и Q V , - массовый и объемный расходы газового потока; а - коэффициент расхода диафрагмы; ξ- коэффициент расши­рения газа; d - диаметр отверстия диафрагмы; ΔP - перепад давления на диафрагме; ρ - плотность газа.

    Помимо диафрагм для измерения расхода газа применяются су­жающие устройства в комплекте с дифманометрами, а также ма­нометры.

    Устройство сужающее быстросменное (УСБ). В комплекте с дифманометром это устройство (рис. 29) позволяет измерять расход газа, транспортируемого через ГРС, измеряя перепад давления, возникающий на диафрагме, и регистрируя его дифманометром.

    Рис. 29 - Устройство сужающее быстросменное УСБ 00.000.

    1 - корпус: 2, 18 - петли; 3 - фланец: 4, 16 - накладки: 5. 9 - прокладки: б - гайка колпачковая: 7. 11 - кольца резиновые: 8 - шпильки: 10 - диафрагма: 12 - пробки: 13 - манжета: 14 - патрубок: /5 - ручка: 17 - крышка: /9 -табличка.

    Отбор давления газа перед диафрагмой производится из полости Б плюсовой камеры, выполненной в корпусе камер, а за диафраг­мой - из полости В минусовой камеры во фланце (рис. 29). Осуществляется отбор давления из этих полостей через отверстия выше горизонтальной оси диафрагмы (рис. 29) А- А, а статического давления - из полости Б через отдельное отверстие (рис. 29) Б-Б.

    Герметичность между плюсовой и минусовой камерами обеспе­чивается равномерным прижатием резинового кольца к плоскости фланца шпильками. Движение газа по газопроводу вызывает до­полнительное прижатие диафрагмы скоростным напором. Окно для извлечения диафрагмы уплотняется прокладкой. Предварительное поджатие прокладки обеспечивается шпильками. При возрастании давления в трубопроводе прокладка дополнительно поджимается к поверхности плюсовой камеры. Для того чтобы предотвратить закусывание прокладки резьбой шпильки, предусмотрена медная ман­жета.

    Стык между фланцем и корпусом герметизируется Уплотнитель­ным кольцом. Дренажные линии расположены в нижней части УСБ. Импульсные и дренажные линии заглушаются технологическими пробками. Облегчить выполнение монтажных и демонтажных работ накладки с D y = 200 мм и выше позволяют две ручки.

    Накладка предназначена для увеличения жесткости и центровки крышки, а петля служит для установки крышки в рабочее положение.

    Манометры дифференциальные сильфонные самопишущие (ДСС). Используют для измерения расхода газа на ГРС по перепаду давления в стандартных сужающих устройствах.

    Чувствительной частью этих дифманометров является сильфон­ный блок, принцип действия которого основан на зависимости между измеряемым перепадом давления и упругой деформацией винтовых цилиндрических пружин, сильфонов и торсионной трубки. Схема самопишущего сильфонного дифманометра и устройство силь­фонного блока приведены на рис. 30.

    Сильфонный блок имеет две полости (+ и -), разделенные основанием 8 и двумя узлами сильфонов 5 и //. Оба сильфона жестко соединены между собой штоком 12, в выступ которого упирается рычаг 7, закрепленный на оси 2. Вывод оси из полости рабочего давления осуществляется при помощи торсионной трубки /, внутренний конец которой сварен с осью 2. а наружный - с основанием торсионного вывода. Конец штока 12 при помощи втулки соединен с блоком диапазонных винтовых цилиндричес­ких пружин 10. Движение штока рычагом 7 преобразуется в поворот оси 2, который через систему рычагов воспринимается стрелкой самопишущего или показывающего прибора. Внутренняя полость сильфонов и основания, к которому они присоединены, заполнена жидкостью, состоящей из 33% чистого глицерина и 67% дистиллированной воды. Температура замерзания такой смеси 17°С.

    Оба сильфона имеют специальные клапанные устройства, на­дежно удерживающие при односторонних перегрузках жидкость от перетекания из сильфона. Клапанное устройство состоит из конуса на донышке сильфона и уплотняющего резинового кольца 6. При односторонней перегрузке конический клапан сильфона с Уплотни­тельным кольцом садится на конусное седло основания и перекры­вает проход перетоку жидкости из сильфона, предохраняя его от разрушения.

    Для уменьшения влияния температуры на показания приборов вследствие изменения объема жидкости сильфон 5 имеет темпера­турный компенсатор. Каждому номинальному перепаду давления соответствует определенный диапазонный пружинный блок 9.

    Регулировка сильфонных дифманометров осуществляется путем изменения длины регулируемых поводков. Установка стрелки расхода на нуль достигается изменением угла наклона рычага 4. Нулевому положению прибора соответствует угол наклона, равный 28". Верхний предел измерения регулируют изменением длин тяги 3.

    Блок одоризации

    Для своевременного обнаружения утечек газа в соединениях газопровода, в сальниках запорной и регулирующей арматуры, в соединениях контрольно-измерительной аппаратуры и т. д. к при­родному газу необходимо добавлять вещества с резким неприятным запахом, называемые одорантом. В качестве такового применяют этилмеркаптан, пенталарм, каптан, сульфан и др., чаще всего - этилмеркаптан (его химическая формула C 2 H 5 SH), который пред­ставляет собой бесцветную прозрачную жидкость со следующими основными физико-химическими свойствами:

    Минимальное количество одоранта в газе должно быть такое, чтобы в помещении ощущалось присутствие газа при концентрации, равной 1/5 нижнего предела взрываемости, что соответствует для природного газа 16 г одоранта на 1000 м 3 газа.

    В настоящее время в качестве одоранта применяют синтетический этилмеркаптан, имеющий ту же химическую формулу C 2 H 5 SH и являющийся дефицитом. Вместо него используют разработанный ВНИИГАЗом одорант СПМ (ТУ 51-81-88), который представляет собой смесь низкокипящих меркаптанов: 30% этилмеркаптана и 50-60% изо-и н.-пропилмеркаптанов и 10-20% изобутилмеркаптанов. Промышленные испытания одоранта СПМ показали, что эффективность его выше, чем этилмеркаптана при одной и той же норме расхода: 16 г на 1000 м 3 газа.

    За рубежом в качестве одорантов широко применяют смеси меркаптанов С 3 - С 4 . Установлено, что они химически более ста­бильны, чем этилмеркаптан.

    Зимой она обычно больше, чем летом. В начальный период эксплуатации вновь построенного газопровода норма одоризации также бывает недостаточной.

    Для одоризации газа применяют одоризаторы капельного типа (ручные), универсальный УОГ-1 и автоматический АОГ-30.

    Одоризационная установка капельного типа. Является универ­сальной, но применяется в основном при расходах газа более 100000 м /ч. Одоризационная установка состоит из (рис. 33) рас­ходной емкости 5 с запасом одоранта, представляющей собой ци­линдрический сосуд с уровнемерной трубкой 13, которая служит для определения количества одоранта, находящегося в емкости, и его расхода в единицу времени: смотрового окна /6 и соответству­ющей обвязки с импульсными трубками и вентилями; подземной емкости 7 для хранения одоранта и вентилей 8, 10 для подключения шлангов при переливе одоранта из расходной емкости в подземную.

    Универсальный одоризатор газа типа УОГ-1 (рис. 34). При прохождении основного потока газа через расходомерную диафрагму, на которой создается перепад давления, под действием которого при соединении плюсовой и минусовой полостей диафрагмы обра­зуется ответвленный поток газа. Этот поток протекает через инжекторный дозатор, в котором используется в качестве эжектирующего потока.

    Последний, проходя через дозатор по кольцевому зазору, создает в нем разрежение, под действием которого в га­зопровод с ответвленным потоком через фильтр и поплавковую камеру из параллельно расположенных емкостей (расходной и из­мерительной, имеющей уровнемерное стекло и шкалу для контроля расхода одоранта в единицу времени) поступает одорант.

    Поплавковая камера предназначена для ликвидации влияния уровня одоранта на дозирование. С этой целью поплавковую камеру и дозатор располагают таким образом, чтобы сопло, через которое одорант поступает в дозатор, совпадало с уровнем одоранта, под­держиваемым в поплавковой камере с помощью поплавка. При заполнении камеры одорантом поплавок перемещается вниз и открывает клапан. При нормальной работе дозатора поплавок совер­шает колебательное движение с амплитудой 3-5 мин и частотой, пропорциональной расходу одоранта.

    Для того чтобы уменьшить расход одоранта дозатор снабжен клапаном, который на заданное время перекрывает поступление одоранта в инжектор. Клапан управляется посредством мембран. При подаче импульсного давления в полость А (см. рис. 35) клапан перекрывает проход одоранту; при сбросе давления из полости А мембрана под действием давления одоранта возвращается в исходное положение и клапан открывает проход одоранту.

    Задатчиком давления в полости А дозатора служит система управления, состоящая из реле времени, регулируемой емкости и клапана.

    Газ из выходного газопровода поступает в узел подготовки газа для питания пневмосистемы одоризатора. Узел подготовки состоит из фильтра, редуктора и манометра. Газ в этом узле очищается, давление редуцируется до давления питания, равного 2 кгс/см 2 .

    Цикличность подачи команды на клапан дозатора регулируется перемещением поршня регулируемой емкости; отношение времени всего цикла ко времени открытого положения клапана - дросселем с помощью секундомера и манометра.

    Ниже приведены технические характеристики одоризаторов УОГ-1 и АОГ-30

    Техническая характеристика универсального одоризатора УО Г- 1
    Рабочее давление газа, кгс/см 2 ............ 2-12
    Перепад давления на диафрагме, кгс/см 2 , при макси­мальном расходе газа 0.6
    Пропускная способность по одоранту, см 3 /ч.. 57-3150
    Максимальный расход газа на питание установки, м 3 /ч 1
    Точность одоризации, % ± 10
    Температура окружающего воздуха. ° С. . . . .... От -40 до 50
    Габаритные размеры, мм: длина............. .... 465
    ширина................. .... 150
    высота................. . . 800
    Масса, кг................... . . 63
    Техническая характеристика автоматической одоризационной установки АОГ-30
    Рабочее давление газа, кгс/см 2 ............ 2-12
    Пропускная способность по одоранту, см /ч....
    Отношение наибольшего расхода одорируемого газа к наименьшему..................... Номинальное число ходов плунжера насоса в 1 мин. Точность одоризации, %................ 5:1 От 4 до 12 ±10
    Максимальный расход газа на питание установки, м 3 /ч
    Температура окружающего воздуха, °С........ От -40 до 50

    Блок одоризации. Состоит из дозатора одоранта, поплав­ковой камеры, смотрового окна, фильтра одоранта, вентиля, крана шарового, фильтра, редуктора, манометров, реле времени, регули­руемой емкости и клапана.

    Дозатор одоранта (рис. 35). Представляет собой инжектор, куда одорант подается через сопло 1, а эжектирующий поток газа - по кольцевому зазо

    ру. Уплотнение камер дозатора выполняется резиновыми кольцами 3.

    Работа дозатора с системой управления перекрытием потока одоранта осуществляется с помощью клапана 5 и седла 4. Пружина 8 обеспечивает герметичность перекрытия клапана 5 с седлом 4. Давлением в полости А осуществляется закрытие седла под действием перемещения мембраны 7. При сбросе давления из полости А клапан 5 возвращается в исходное положение. Под действием давления одоранта перемещается мем­брана 6.

    Дозатор снабжен муфтой 9, за счет вращения которой изменяется зазор Т между соплом 1 и смесителем 10. Размер зазора Т изменяется при тарировании дозатора по производительности, после окончания которой положение муфты 9 фиксируется контргайкой 2.

    Поплавковая камера (рис. 36). Состоит из корпуса с крышкой, внутри которого размещен герметично запаянный поплавок, при­крепленный к штоку с помощью шплинта. Шток снабжен золотником, который садится на седло в верхнем положении. В крышке на кронштейне установлен датчик системы сигнализации. В прорези датчика перемешается флажок, который, пересекая рабочую зону датчика, вызывает его срабатывание.

    Смотровое окно (рис. 37). Состоит из корпуса, втулки и стек­лянной трубки. Герметизация элементов смотрового окна осущес­твляется с помощью резиновых уплотнительных колец.

    Фильтр одоранта (рис. 38). Представляет собой цилиндрический корпус с крышкой, в которую ввернута кассета с сетчатым доныш­ком. Кассета заполнена фильтрующим элементом - стекловатой. Крышка герметизируется уплотнительным кольцом. Нижняя часть корпуса используется в качестве отстойника и имеет вентиль для слива отстоя.

    Рис. 39. Реле времени.

    / - дроссель: 2 - промежуточное кольцо: 3, 5 - мембраны: 4 -

    шток: б - крышка: 7 - фланец: 8 - винт: 9 - направляющие: 10 -

    пружина: 11 - клапан: 12 - кнопка запуска

    Реле времени (рис. 39). Давление газа подается в полость, образованную промежуточным кольцом и двумя мембранами, ко­торые жестко соединены винтами через фланец и кольцо со штоком. Шток имеет осевое и радиальное отверстия. Под действием пружины шток находится в верхнем положении и упирается во фланец.

    Газ через осевое отверстие в штоке и дроссель поступает в полость, образованную крышкой и мембраной, на которую и давит. Шток перемешается вниз и открывает клапан сброса. Для запуска реле времени предусмотрена кнопка.

    Регулируемая емкость (рис. 40). Состоит из корпуса, крышек, поршня, винта и уплотнительных колеи. Предназначена для регу­лирования подачи одоранта в газопровод.

    Клапан (рис. 41). Основными элементами его являются мембраны, которые имеют разные аффективные площади и образуют две полости: Л и б, соединенные между собой клапаном через регули­рующий дроссель. Проходное сечение дросселя регулируется иглой. Игла перемещается с помощью винта с маховиком. На лицевой стороне маховика имеется шкала. Двумя винтами указатель шкалы укреплен на корпусе клапана.

    Измерительная емкость (рис. 42). Представляет собой цилиндрический сосуд с уровнемерной стеклянной трубкой, снаб­женной шкалой 2. Стеклянная трубка защищена кожухом и уплот­няется резиновыми кольцами.

    Пропорциональный одоризатор газа ОГП-02. Предназначен для автоматического ввода одоранта (этилмеркаптана) в поток приро­дного газа (пропорционально его расходу), чтобы придать газу специфический запах, который будет способствовать обнаружению утечек. Одоризатор ОГП-02 может эксплуатироваться на открытом воз­духе в умеренно холодном климате на объектах, с условным давлени­ем 16 кгс/см 2 и с расходом газа от 1000 до 100 000 м 3 /ч.


    Одоризатор состоит (рис. 43) из дозатора и контрольной емкости. В дозаторе размещены сопло и регулятор уровня одоранта. Внутри контрольной емкости находятся поплавок из нержа­веющей стали, штанга, на верхней час­ти которой закреплен магнит. По внеш­ней поверхности трубки скользит маг­нитный указатель уровня одоранта.

    Принцип работы одоризатора ОГП-02 заключается в следующем (рис. 43, 44). Одорант поступает из контрольной емкости через вентиль до тех пор, пока уровень его не перекроет нижнюю кромку регулятора уровня. В дозаторе с помощью регулятора уровня и технологической обвязки ем­костей поддерживается постоянный, заданный, уровень одоранта. Подача его в газопровод осуществляется за счет перепада давления на расходо­мерной диафрагме с помощью пере­тока газа из камеры «плюс» по им­пульсной трубке, соплу, сборнику, по трубкам через камеру «минус» в га­зопровод. Поток газа из сопла, проходя через слой одоранта, выносит пары и мелкие капельки его в сборник, а из него - в газопровод.

    Пополнение дозатора одорантом осуществляется из расходной и контрольной емкости при открытом вентиле.

    Настройка одоризатора на требуемую степень одоризации газа осуществляется за счет изменения как толщины слоя одоранта над верхним концом сопла регулятором уровня, так и потока газа через сопло вентилем.

    Расход одоранта в любой момент времени за определенный интервал (15-30 мин) можно измерить с помощью контрольной емкости, закрыв вентиль. Одоризатор на расход одоранта пропор­ционально расходу газа настраивается два раза: при переходе с зимнего расхода газа на летний, и наоборот.


    В дальнейшем расход одоранта в зависимости от изменения расхода газа регулируется автоматически.

    Техническое обслуживание одоризатора ОГП-02 сводится к пе­риодической заправке рабочей емкости одорантом и последующему запуску одоризатора в работу.

    Рис. 44. Схема одоризатора газа ОГП-02.

    / - дозатор: // - рабочая (расходная) емкость. /// - контрольная емкость. 1 - 10 - вентили.

    Блок переключения

    Предназначен, во-первых, для защиты системы газопроводов потребителя от возможного высокого давления газа; во-вторых, для подачи газа потребителю, минуя ГРС, по байпасной линии с при­менением ручного регулирования давления газа во время ремонтных и профилактических работ станции.

    Блок переключения состоит из кранов на входном и выходном газопроводах, обводной линии и предохранительных клапанов. Как правило, этот блок должен располагаться в отдельном здании или под навесом,защищающем его от атмосферных осадков.

    Предохранительные клапаны. На газопроводе монтируют два предохранительных клапана, один из которых является рабочим, другой - резервным. Применяют клапаны типа CППK (специаль­ный полноподъемный предохранительный клапан) (рис. 45; табл. 10) и ППК (пружинный полноподъемный предохранительный кла пан). Между предохранительными клапанами ставят трехходовой вентиль типа КТРП, всегда открытый на один из предохранительных клапанов. Между газопроводом и клапанами отключающая арма­тура устанавливаться не должна. Пределы настройки предохрани­тельных клапанов должны превышать номинальное давление газа на 10%.

    В процессе эксплуатации клапаны следует опробовать на сра­батывание один раз в месяц, а в зимнее время - один раз в 10 дней с записью в оперативном журнале. Проверку и регулировку предохранительных клапанов проводят два раза в год. о чем делают соответствующую запись в журнале.


    На шток предохранительного сбросного клапана СППК4Р (рис. 45), с одной стороны, действует давление газа из выходного газо­провода, а с другой - усилие сжатой пружины. Если давление газа на выходе из ГРС превысит заданное, то газ, преодолевая усилие сжатой пружины, поднимает шток и соединяет выходной газопровод с атмосферой. После снижения давления газа в выходном газопроводе шток под действием пружины возвращается в исходное положение, перекрывая проход газа через сопло клапана, разобщая таким образом выходной газопровод с атмосферой. В зависимости от давления настройки предохранительные клапаны комплектуют сменными пружинами (табл. 11). Таблица 11 - Выбор пружин для предохранительных клапанов типа СППК и ППК

    Клапан Давление настройки, кгс/см Номер пружины Клапан Давление настройки. кгс/см 2 Номер пружины
    СППК4Р-50-16 1.9-3.5 ППК4-50-16 1,9-3,5
    3.5-6.0 3,5-6,0
    СППК4Р-80-16 2.5-4.5 6,0-10,0
    4.5-7,0 10,0- 16,0
    СППК4Р-100-16 1 ,5-3,5 ППК4-80-16 2,5-4,5
    3,5-9,5 4,5-7,0
    СППК4Р-150-16 1,5-2,0 7.0-9.5
    2,0-3,0 9.5-13.0
    3,0-6,5 ППК4-100-16 1.5-3.5
    СППК4Р-200-16 0,5-8,0 3.5-9.5
    9.5-20
    ППК4-150-16 2.0-3.0
    3.0-6.5
    6.5-11.0
    11 - 15,0

    Таблица 12 - Габаритные и присоединительные размеры, мм, и масса клапанов типа ППК4

    Помимо клапанов типа СППК широко применяют пружинные предохранительные фланцевые клапаны типа ППК-4 (рис. 46. табл. 12) на условное давление 16 кгс/см 2 . Клапаны этого типа снабжены рычагом для принудительного открытия и контрольной продувки газопровода. Пружина регулируется регулировочным винтом.

    Давление газа из газопровода поступает под запорный клапан, который удерживается в закрытом положении пружиной через посредство штока. Натяжение пружины регулируется винтом. Ку­лачковый механизм позволяет производить контрольную продувку клапана: поворотом рычага усилие через валик, кулачок и направ­ляющую втулку передается на шток. Он поднимается, открывает клапан и происходит продувка, которая указывает, что клапан работает и сбросной трубопровод не засорен.

    Клапаны ППК-4 в зависимости от номера установленной пру­жины могут настраиваться на срабатывание в диапазоне давлений от 0,5 до 16 кгс/см 2 (табл. 13).

    Пропускная способность предохранительных клапанов G. кг/ч:

    G - 220Fp .

    где F- сечение клапана, см, определяемое для клапанов полно­подъемных при h ≥ 0,25d по зависимости F = 0,785d 2 ; для неполноподъемных при h ≥ 0,05d - F = 2,22dh ; d - внутренний диаметр седла клапана, см; h - высота подъема клапана, см; р - абсолютное давление газа, кгс/см 2 ; Т - абсолютная температура газа, К; М - молекулярная масса газа, кг.

    Для сброса газа в атмосферу необходимо применять вертикаль­ные трубы (колонки, свечи) высотой не менее 5 м от уровня земли; которые выводят за ограду ГРС на расстояние не менее 10 м. Каждый предохранительный клапан должен иметь отдельную вы­хлопную трубу. Допускается объединение выхлопных труб в общий коллектор от нескольких предохранительных клапанов с одинако­выми давлениями газа. При этом общий коллектор рассчитывают на одновременный сброс газа через все предохранительные клапаны.

    Краны. Устанавливаемые в блоках переключения, а также на других участках газопроводов ГРС краны различаются по видам приводов (табл. 14).

    1) кран типа 11с20бк и 11с20бк1 - с рычажным приводом (рис. 47, табл. 15);

    2) кран типа 11с320бк и 11с320бк1 - с червячным приводом (редуктором) (рис. 48; табл. 16);

    3) кран типа 11с722бк и 11с722бк1 - с пневмоприводом (рис. 49; табл. 17);

    4) кран типа 11с321бк1 - для бесколодезной установки (рис. 50; табл. 18);

    5) кран типа 11с723бк1 - для бесколодезной установки (рис. 51 табл. I9)


    Рис. 47. Краны 1c20бк и 11с20бк1.

    1 - корпус; 2 - пробка; 3 - нижняя крышка: 4 - регулировочный винт; 5 - шпиндель 6- обратный клапан для смазки: 7 - смазочный болт. 8 - рычаг:9 - сальник.

    Рис. 48. Краны 11с320Бк и 11с320бк1.

    1- корпус: 2 - пробка: 3 - нижняя крышка; 4- регулировочный винт: 5 - червячный сектор: б - червяк. 7 - маховик: 8 - смазочный болт: 9 - обратный клапан: 10 - кор­пус редуктора: 11 - сальник. 12 - шпиндель: 13 - крышка.


    Рис. 49. Краны 11с722бк (а) и 11с722бк1 (б) с D у 50 и 80 мм.

    / - корпус: 2 - пробка: 3 - пята; 4 - шарик. 5 - установочный винт; 6 - стяжной болт: 7 - колпачок; 8 - нижняя крышка: 9 - сальниковая набивка: 10 - шпиндель: 11 - кронштейн: 12 - рычаг; 13- ви лка: 14 - шток: 15 - пневм опривод; 16 - мультипликатор: 17 - конечный выключатель; 18 - ниппель. /- исполнение фланцевых кранои 1с722бкс D у 50, 80, 100 мм.

    Рис. 50 Кран 11с321бк1

    Все перечисленные краны изго­тавливают с концами как для флан­цевого соединения (обозначение оканчивается буквами «бк»), так и под приварку (обозначение оканчи­вается буквами и цифрой «бк1»). Корпус крана выполняют из стали, а пробку - из чугуна. Краны мон­тируют при температуре окружаю­щей среды от -40 до 80° С.

    На кранах с обводом устанав­ливают проходной кран D у = 150 мм для облегчения открывания основ­ного крана путем выравнивания давления по обе стороны от затвора. Обводный кран соединяется с кор­пусом основного крана обводными трубами.

    Кран с пневмоприводом состоит из узла крана, пневмопривода и мультипликатора. В случае необхо­димости управление краном осущес­твляется вручную с помощью ма­ховика. Пневмопривод шарнирно со­единен с корпусом крана и обеспечивает возвратно-поступательное движение штока и поворот рычага, жестко связанного со шпинделем шпонкой. Положение штока регулируется вилкой, шарнирно соеди­ненной с рычагом.

    На крышке редуктора установлен конечный выключатель, от­ключающий электрический ток в цепи управления при конечных положениях пробки крана.

    Мультипликатор предназначен для подачи специальной смазки в полость под верхней крышкой, а также в канавки корпуса и пробки. Смазка обеспечивает герметичность и облегчает поворот


    пробки. Для наполнения мультипликатора специальной смазкой, по мере ее расходования, применяется пневматический нагнетатель смазки.

    Узел крана состоит из следующих основных деталей: корпуса, пробки, нижней крышки и регулировочного винта, который поджи­мает пробки к уплотнению корпуса. Кран с рычажным (ручным) приводом состоит из узла крана, редуктора или рукоятки.

    Основным узлом трехходовых кранов, используемых на ГРС, является запорный, состоящий из корпуса, пробки и редуктора.

    6) На ГРС применяют также и шаровые краны (рис. 52), преимущества которых перед другими в простоте конструкции, прямоточности, низком гидравлическом сопротивлении, постоянстве взаимного контакта уплотнительных поверхностей. Отличительные особенности шаровых кранов от других:

    1) корпус и пробка крана благодаря сферической форме имеют

    меньшие габаритные размеры и массу, а также большую прочность;

    2) конструкция кранов со сферическим затвором менее чувст­вительна к неточностям изготовления и обеспечивает гораздо лучшую герметичность, так как поверхность контакта уплотнительных по­верхностей корпуса и пробки полностью окружает проход и герме­тизирует затвор крана;

    3) изготовление этих кранов менее трудоемко. В шаровых кранах с кольцами из пластмассы отпадает необходимость п притирке уплотнительных поверхностей. Обычно пробку хромируют или по­лируют.

    Шаровые краны отличает от других большое разнообразие кон­струкций. Можно выделить два основных типа кранов: с плавающей пробкой и с плавающими кольцами.

    Шаровые краны типа KШ-10 и КШ-15 предназначены для отключения трубопроводов, технологического, контрольного и пред­охранительного оборудования.

    Герметичность запорного узла (шаровая пробка-седло) обеспе­чивается плотным охватом части сферической поверхности шаровой пробки седлом с некоторым натягом за счет способности материала седла деформироваться при скреплении деталей крана стяжными болтами. Материалами для изготовления седла могут быть фторо­пласт, винипласт, резина или другие, обладающие свойствами плас­тической деформации, близкими к свойствам названных материалов. В случае износа уплотнительных поверхностей седла и утраты герметичности запорным узлом конструкция крана предусматривает возможность восстановления герметичности за счет удаления одной или двух прокладок, установленных с двух сторон между корпусом и крышкой.

    Алексинским заводом «Тяжпромарматура» освоен серийный вы­пуск шаровых кранов с D y - 50, 80, 100. 150. 200. 700, 1000. 1400 мм на р у - 80 кгс/см 2 модернизированной конструкции с пробкой в опорах и уплотнением из эластомерного материала (полиуретана или других материалов с высокой износостойкостью).

    Корпуса кранов с D y - 50 - 200 мм штампованные, с фланцевым разъемом, а с D у = 700. 1000. 1400 мм - цельносварные, из штампованных полусфер (рис. 53). Применяемые в кранах блоки управления (БУЭП-5; ЭПУУ-6) не требуют дополнительной обвязки в условиях эксплуатации, так как имеют встроенную клеммную коробку и конечный выключатель. Безбаллонная конструкция при­водов значительно сократила расход дефицитной гидрожидкости для гидросистемы кранов. Кроме того, в кранах применены ручные гидравлические насосы принципиально новой конструкции.

    Рис. 52. Кран шаровой КШ без смазки.

    1- корпус: 2 - шаровая пробка (поворотный затвор). 3 - седло: 4 - шпин­дель; 5 - крышка (фланги): б - рукоятка: 7 - уплотнительная прокладка: 8. 9 - уплотнительные резиновые кольца: 10 - болт: 11 - прокладка

    Завод изготавливает следующие шаровые краны:

    МА39208 - D У 50, 80, 100, 150, 200 мм; р у 80 кгс/см 2 ; с ручным и пневмоприводом

    МА39003 - D у 300 мм; р у 80 кгс/см 2 ; с ручным и пневмоприводом MA39113 - D у 400 мм; р у 160 кгс/см 2 ; с пневмогидроприводом

    MA39I12 - D у 1000 мм; p у 80 и 100 кгс/см 2

    MA39183 - D у 700 и 1400 мм: р у 80 кгс/см 2

    МА39096 - Dу 1200 мм; р у 80 кгс/см 2

    МА39095 - D у 1400 мм; р у 80 кгс/см 2

    МА39230 - D у 50. 80. 100. 150. 200 мм; p у 200 кгс/см 2

    Краны шаровые МА39208 с ручным управлением D y - 50, 80, 100, 150 мм; р у 80 кгс/см 2 предназначены для применения в качестве запорного устройства на трубопроводах, транспортирующих приро­дный газ (табл. 20). В конструкции кранов большое число ориги­нальных устройств. Узел крана D y 50, 80. 100. 150 мм состоит из двух компактных штампованных полукорпусов с одним разъемом, наличие одного разъема уменьшает вероятность разгерметизации узла крана относительно внешней среды. Герметизация центрального разъема осуществляется резиновым уплотнением специальной формы.

    Конструкция запорного органа выполнена по схеме «пробка в опорах», с самосмазывающими подшипниками скольжения из металлофторопласта. Уплотнение затвора из полиуретана, который

    Рис. 53. Шаровой кран с пневмогидроприводом.

    1- корпус крана: 2 - редуктор ручной: 3 - маховик; 4 - труба колонны. 5 - удлинитель; 6 - колонна: 7 - трубопровод для подачи герметика в уплотнение: 8 - гидропривод: 9 - масляные баллоны

    Таблица 20- Габаритные, присоединительные размеры, мм, и масса шаровых кранов

    0, p У О D 1 А L С Н H, Масса, кг
    с пневмогидроприводом с руч­ным приво­дом
    80- 160 190- 205 2155 (360) 580 (470)
    2215 (440) 820 (650)
    80- 125 386-398 2420 (625) 2815 (1020) - 1475- 1480 -
    2530 (935) 3670 (2055) 3570 (1975) 4000 (3600) 3800 (3400)
    2610 (1015) 3970 (2375) - 5560 (5110) -
    80- 100 978- 988 2480 (1180) 4010 (2770) - 10815 (10020) -
    - -
    - -

    Примечание. Размеры и масса в скобках - для кранов надземной установки

    запрессован в металлическое седло. Мягкие полиуретановые уплот­нения затвора обладают высокой износоустойчивостью, стойкостью к абразивному износу, эрозионностойкостью и обеспечивают на­дежную герметичность затвора во всех диапазонах давлений. Поджатие седел к затвору осуществляется за счет давления транспор­тируемой среды и усилия пружин, служащих для надежной гер­метичности затвора при низких давлениях. Краны изготавливаются с ручным приводом, представляющим собой рычаг. Ниже приведена техническая характеристика крана.

    Расходомеры переменного перепада состоят из устройств, образующих местное сужение в трубопроводе (сужающие устройства) и дифференциальных манометров перепада давления.

    Принцип действия сужающих устройств заключается в следующем: при протекании потока жидкости, газа или пара в суженном сечении трубопровода часть потенциальной энергии давления переходит в кинетическую. Средняя скорость потока увеличивается, в результате чего в сужающем устройстве создается перепад давления, величина которого зависит от расхода вещества.

    Сужающие устройства подразделяются на две группы: нормализованные и ненормализованные. К первой группе относятся диафрагмы, сопла, трубы Вентури. Диафрагмы и сопла устанавливают в трубопроводах круглого сечения диаметром не менее 50 мм, а трубу Вентури — в трубопроводе диаметром не менее 100 мм.

    Ко второй группе сужающих устройств относятся сдвоенные диафрагмы, сопла с профилем размером 1/4 круга и другие устройства, которые применяют для измерения расхода вязких жидкостей при малых диаметрах трубопроводов.

    Диафрагмы (рис. 31) бывают камерные А — отбор импульсов давления при помощи кольцевых камер и бескамерные Б — отбор импульсов давления при помощи отверстий (табл. 13). Толщина диска диафрагмы должна быть менее 0,1 D (D — диаметр условного прохода трубопровода).

    Камерные диафрагмы состоят из диска, прокладки и двух кольцевых камер. Кольцевые камеры измеряют давление до и после диафрагмы. Толщина диска равна 3 мм для трубопроводов диаметром D < 150 мм и 6 мм для трубопроводов диаметром 150 < D < 400 мм.

    Сопла могут применяться для труб диаметром не менее 50 мм. Схема сопла представлена на рис. 32. Верхняя часть соответствует отбору импульсов давления при помощи кольцевой камеры, нижняя — отбор производится при помощи отверстий. Выпускают их малыми сериями.

    Труба Вентури имеет постепенно сужающееся сечение, которое затем расширяется до первоначального размера. Вследствие такой формы потери давления в ней меньше, чем в диафрагмах и соплах. Труба Вентури состоит из входного и выходного конусов и цилиндрической средней части (рис. 33).

    Труба Вентури называется длинной, если диаметр выходного конуса равен диаметру трубопровода, и короткой, если он меньше диаметра трубопровода.

    Сужающие устройства — простые дешевые надежные средства измерения расхода. Градуировочная характеристика стандартных сужающих устройств может быть определена расчетным путем, поэтому отпадает необходимость в образцовых расходомерах. Сужающее устройство является индивидуальным для каждого расходомера.

    Из перечисленных сужающих устройств наибольшее применение нашли диафрагмы, поэтому приведем примеры расчета диафрагмы для измерения расхода воды и влажного воздуха (газа).

    Расчет сужающего устройства заключается в определении размеров его проходного отверстия.

    1. Находим произведение коэффициента расхода а на отношение площади проходного сечения диафрагм к площади трубопровода а:

    2. Рассчитываем критерии Рейнольдса, соответствующие расчетному и минимальному расходам:

    3. По произведению ста с помощью графика (рис. 34) определяем значение а и а:

    4. Рассчитываем потери давления от установки диафрагмы

    Фактические потери давления от установки диафрагмы меньше допустимого значения.

    1. Определяем диаметр прохода диафрагмы при рабочей температуре:

    6. Находим диаметр прохода при температуре 20 °С:

    7. Проверяем расчет по формуле:

    1. Определяем плотность влажного воздуха:

    2. Находим ориентировочное значение произведения ста, приняв коэффициент расширения е = 1:

    1. Рассчитываем критерий Рейнольдса для расчетного и минимального расходов воздуха:
    2. По графику (см. рис. 34) определяем ориентировочные значения а и а. Они равны соответственно 0,445 и 0,673.
    3. Находим значение коэффициента расширения е по графику (рис. 36) - е = 0,975.
    4. Уточняем значение произведения а а 8 = 0,292 . 0,975 = 0,287.
    1. По уточненному произведению а а 8 определяем а и а (см. рис. 34):

    Полученное значение меньше допустимого.

    1. Рассчитываем потери давления от сужающего устройства (см. рис. 35): AP d = 55 %;

    10. Проверяем расчет по формуле

    Однотипные по устройству дифференциальные манометры и вторичные приборы могут быть использованы для различных условий измерения.

    Расходомеры с сужающими устройствами универсальны, они применяются для измерения расхода практически любых однофазных (иногда и двухфазных) сред в широком диапазоне давлений, температур, диаметров трубопроводов.