Индикатор заряда аккумулятора своими руками. Простой индикатор заряда и разряда аккумулятора Схема индикатора зарядки аккумулятора на автомобиле

Все мы оказывались в ситуации, когда очень важно знать, насколько сильно разряжен аккумулятор и сколько времени остается до отключения устройства. Максимально точно определить заряд и время поможет малопотребляющая микросхема MAX17055 на базе алгоритма ModelGauge m 5 EZ от Maxim Integrated .

Носимые устройства являются привлекательным и растущим сегментом рынка, в котором интеллектуальные часы продолжают удерживать доминирующее положение. Каждый производитель стремится занять лидирующую позицию в этой переполненной и конкурентной среде, в то время как потребители требуют точного определения заряда аккумуляторной батареи и максимально долгой работы устройств (рисунок 1). Рассмотрим требования, связанные с важной функцией контроля за емкостью аккумулятора, а также познакомимся с прорывной технологией, которая решает эти задачи.

Проблемы затягивания сроков вывода устройств на рынок

Эффективность использования аккумулятора зависит от качества применяемой математической модели, которая лежит в основе алгоритма измерения уровня заряда. Если потратить время на исследование индивидуальных характеристик аккумулятора, то вы получите более точное математическое описание, сможете снизить возможность возникновения ошибки текущего состояния заряда (SOC) и правильно спрогнозировать, когда аккумулятор приближается к полному разряду.

Энергия, запасенная в батарее (емкость в мА·ч), зависит от таких параметров как нагрузка и температура. В результате разработчики должны снимать характеристики заряда/разряда аккумулятора для работы в самых разнообразных условиях. Как только модель заряда-разряда, описывающая поведение аккумулятора, определена – она загружается в специализированную микросхему, которая следит за состоянием SoC в процессе работы аккумулятора (эти микросхемы часто называют «топливомером» или Fuel Gauge . Прим. ред.) . Тщательный контроль за состоянием аккумулятора позволяет обеспечить более высокий уровень безопасности при заряде и разряде, продлить срок службы аккумулятора.

Получение модели аккумулятора является проблемой, увеличивающей срок вывода продукта на рынок. Трудности в обслуживании потребителей любого уровня, в том числе — и наиболее крупносерийных, также составляет сложность для производителей. Поставщики интегральных схем (ИС) традиционно ориентированы на производителей крупных серий устройств, поскольку для получения модели часто требуется обширная исследовательская работа, и только некоторые производители ИС имеют необходимые для этого ресурсы.

Проблемы оценки времени работы аккумулятора

Одним из важных последствий использования неточной модели аккумулятора является высокая погрешность при оценке времени его работы. Типовой суточный сценарий работы интеллектуальных часов включает в себя 5 часов в активном состоянии, в том числе таких действий как проверка времени и уведомлений, использование приложений, воспроизведение музыки, разговоры и тренировки, и 19 часов в пассивном состоянии (только проверка времени). Если устройство потребляет 40 мА в активном режиме и 4 мА в пассивном, то в общей сложности потребление составит 276 мА·ч в день, что примерно соответствует емкости типичной аккумуляторной батареи. Точное предсказание времени работы батареи необходимо для предотвращения неожиданных или преждевременных перерывов в работе устройства.

Продолжительность времени работы также важна. В пассивном режиме типовая аккумуляторная батарея может выдерживать до 69 часов работы (276/4 мА). Типовая микросхема Fuel Gauge , потребляющая 50 мкА, сократит время работы батареи в пассивном режиме примерно на 52 минуты, а такой величиной уже нельзя пренебрегать.

Использование технологии EZ для решения проблем

Компания Maxim Integrated создала алгоритм для точной оценки состояния заряда и безопасного управления для большинства аккумуляторных батарей. Алгоритм был разработан после изучения характеристик обычных литиевых аккумуляторов.

В алгоритме ModelGauge™ m5 EZ (EZ) используется модель аккумулятора, встраиваемая в ИС Fuel Gauge, которая настроена на конкретное приложение. Проектировщики могут создавать модели аккумуляторов, используя простую утилиту настройки, которая входит в состав программного обеспечения оценочного набора. Разработчику системы необходимо предоставить значения только трех параметров:

  • емкость (зачастую указывается на этикетке или в документации на аккумулятор);
  • напряжение аккумулятора, которое будет считаться напряжением полного разряда аккумулятора (зависит от приложения);
  • напряжение полного заряда аккумулятора (если оно выше 4,275 В).

С технологией EZ разработчикам больше не нужно самостоятельно строить модель аккумулятора, поскольку это уже было сделано производителем микросхемы контроля состояния заряда(Fuel Gauge).

Несколько адаптивных механизмов, реализованных в алгоритме EZ, еще больше повышают точность измерения уровня заряда за счет дополнительного изучения характеристик аккумуляторной батареи в процессе работы. Один из таких механизмов гарантирует, что по мере разряда аккумулятора показания датчика будут стремиться к 0%. Поэтому датчик сообщает об уровне заряда (SOC), равном 0%, как только напряжения ячейки снизится до уровня полного разряда.

Если мы зададимся величиной бюджета ошибки на уровне 3%, то при измерении полного разряда аккумулятора 95,5% всех моделей EZ пройдут тестирование. Это очень близко к показателям, демонстрируемым лабораторными моделями, которые успешно проходят испытания в 97,7% тестовых случаев. Как показано на рисунке 2, механизм EZ работает примерно на том же уровне точности, когда батарея только приближается к полному разряду, и это наиболее важно.

Для многих пользователей недостаточно знать уровень заряда или оставшуюся емкость аккумулятора. На самом деле они хотят знать, сколько времени осталось до полного разряда. Упрощенные методы, такие как деление оставшейся емкости на настоящую или будущую нагрузку, могут привести к чрезмерно оптимистичным оценкам. Алгоритм EZ способен дать гораздо более точную оценку времени до полного разряда, основываясь на известных параметрах батареи, температуре, уровне нагрузки и значении напряжения полного разряда для конкретного приложения.

Благодаря алгоритму EZ крупносерийные производители могут использовать его в качестве отправной точки для быстрой разработки. И только после того, как они получат рабочий прототип, можно перейти на специализированную выверенную модель заряда-разряда. Менее крупные производители могут применять алгоритм EZ для наиболее доступных аккумуляторов, с тем лишь условием, что разброс параметров аккумуляторов не будет слишком большим.

MAX17055: Fuel Gauge c ModelGauge m5 EZ

Микросхема MAX17055 на базе алгоритма ModelGauge m5 EZ предназначена для работы с аккумулятором, состоящим из одной ячейки. В режиме ”Shutdown Mode” она потребляет 0,7 мкА, а в спящем режиме – всего 7 мкА и всего 18 мкА в активном состоянии, что идеально подходит для носимых устройств с батарейным питанием. Интерфейс I²C обеспечивает доступ к регистрам данных и управления и обеспечивает полный контроль над микросхемой.

Сравнительный анализ погрешностей измерения

На рисунке 3 представлен сравнительный анализ погрешностей MAX17055. Эта диаграмма показывает, что при почти полном разряде аккумулятора микросхема MAX17055 в большинстве тестовых случаев (15 из 26) обеспечивает погрешность не более 1%, в то время как конкурирующий аналог демонстрирует гораздо более высокую погрешность для одного и того же количества испытаний.

Преимущества при оценке времени работы

Малая погрешность около значений состояния полного разряда аккумулятора обеспечивает оптимальное использование заряда батареи, увеличение времени работы и минимизацию возможности неожиданного или преждевременного прерывания работы устройства, то есть позволяет лучше прогнозировать время работы до полного разряда.

Увеличение срока службы по сравнению с конкурентами

Использование ИС Fuel Gauge с малым значением тока собственного потребления увеличивает время работы аккумулятора. Для MAX17055 ток в активном состоянии составляет 18 мкА, что на 64% ниже, чем у ближайшего конкурента. Кроме того, в спящем режиме ток падает до 7 мкА. Применяя эти характеристики к рассмотренному в начале статьи суточному сценарию для умных часов, можно посчитать, что время работы аккумулятора сокращается уже не на 52 минуты, а всего лишь на 7 минут. Это – существенное увеличение времени работы.

Заключение

Очень важно использовать качественные математические модели заряда-разряда аккумуляторов для построения эффективной системы измерения заряда, которая определяет время работы аккумулятора с максимальной точностью. Сложности, возникающие при построении точных моделей аккумуляторов, увеличивают время выхода устройств на рынок и препятствуют выпуску небольших серий устройств с батарейным питанием. Прорывной подход, основанный на алгоритме E7 ModelMauge m5 EZ, встроенном в MAX17055, делает процесс разработки быстрее, проще, дешевле и обеспечивает более эффективное использование аккумуляторов в широком спектре приложений.

Удивительно, что абсолютное большинство автомобилей не имеет датчика зарядки аккумулятора. Как определить зимой, что АКБ стоит подзарядить за ночь, чтобы утром не идти на работу пешком? Или если машину завести не получается – как не загонять безсмысленно батарею до полного истощения?

Используя эту схему вы сможете легко собрать своими руками датчик зарядки аккумулятора. Притом себестоимость, как видите, будет ниже чем у любого китайского аналога, а качество намного лучше! Запитывать модель имеет смысл от замка зажигания, дабы диод светился только, когда ключ вставлен.

Цвет светодиода будет обозначать степень зарядки. Красный – от 6 Вольт до 11, синий от 11 до 13, зелёный боле 13

В комплект входят следующие детали:

Транзисторы
BC547 – 1шт
BC557 – 1шт
Резисторы
1 кОм – 2шт
220 Ом – 3 шт
2,2 кОм – 1 шт
Диоды (стабилитроны)
10 v – 1шт
9,1 v – 1шт
Светодиоды
RGB светодиод – 2шт

Светодиод проверяем тестером, заодно проверяем какой вывод соответствует каждому цвету:

После примеряем детали к печатной плате и вырезаем нужный нам кусок:

Затем приклеиваем светодиод к плате и начинаем монтаж элементов. Важный момент! Так как этот модуль вы будете использовать в автомобиле, то целесообразно не припаивать светодиод к плате, а вывести его на проводах. Так, чтобы вы могли установить его отдельно на приборной панели. Мы же установим его на плату – для простоты и наглядности.

Схема транзисторов(на всякий случай):

Вот что получилось:

Схема отлично работает, тестировалась полчаса, прогоном напряжения от минимального до максимального. В качестве источника питания использовался блок питания от ноутбука с выходным напряжением 19V. Регулятор напряжения – LM 317 и подстроечный резистор 10 кОм. На видео есть небольшой сбой срабатывания на переходе красный – синий и синий – зеленый, это связано со слишком быстрым падением/приростом напряжения (тестер не успевал фиксировать изменения вольтажа), на аккумуляторе все это будет срабатывать плавнее и точнее.

При разряженном аккумуляторе завести автомобиль довольно проблематично. Чтобы не было такого неприятного «сюрприза», достаточно просто время от времени пользоваться вольтметром. Однако не все автомобилисты и не всегда это делают, ведь гораздо удобнее иметь некое устройство, показывающее, на сколько еще хватит зарядки аккумулятора.

Какие бывают индикаторы

Аккумуляторная батарея (или АКБ) представляет собой шесть связанных между собой элементов, напряжение в каждом в норме должно составлять около 2,15 вольт, т. е. общее напряжение аккумулятора подходит к 13,5 вольтам. Если заряд падает ниже критических значений (примерно 9,5 вольт), это может привести к глубокой разрядке аккумулятора и, как следствие, полному выходу его из строя.

Современные технологии «идут навстречу» автомобилистам и максимально облегчают им жизнь. Например, во многих автомобилях уже имеются бортовые компьютеры, которые также следят и за уровнем заряженности аккумулятора.

Однако, пока такая опция доступна далеко не всем, приходится использовать другие виды индикаторов этого важного показателя. Так, можно встретить отдельные кристаллические дисплеи на приборной панели, бывают индикаторы-гигрометры, также можно (при наличии соответствующих навыков) изготовить индикатор заряда аккумулятора самостоятельно. Многие сигнальные устройства такого типа необходимо подключать в бортовую сеть автомобиля, чтобы они могли отслеживать уровень зарядки АКБ.

Встроенный индикатор заряда

Самый часто встречающийся вариант индикатора на необслуживаемых аккумуляторных батареях – гидрометр. Он состоит из глазка, световода, ножки и поплавка (поэтому его называют поплавковым). Ножка со световодом находятся внутри аккумулятора, на ножке закреплен поплавок, с помощью которого определяется уровень электролита в батарее. На корпусе аккумулятора находится глазок, который показывает три основных состояния АКБ:

  • зеленый шарик-поплавок просвечивает в смотровой глазок, это значит, что батарея заряжена больше, чем наполовину;
  • глазок остается черным (это просвечивает индикационная трубка), это сигнал о том, что поплавок полностью погрузился в электролитическую жидкость, следовательно, плотность ее понижена, а аккумулятор требуется заряжать;

Дополнительная информация. В некоторых моделях гидрометров имеется поплавок красного цвета, который видно в «окошке» при понижении заряда и плотности электролита.

  • если в «глазке» видна только поверхность жидкости внутри аккумулятора, значит, он «хочет пить» – уровень электролита критический, срочно необходимо долить дистиллированной воды (а сделать это довольно сложно, поскольку такие аккумуляторы необслуживаемые).

Обратите внимание! Хотя встроенный индикатор заряда батареи такого типа и позволяет мгновенно определить имеющуюся проблему (или ее отсутствие), но, судя по некоторым отзывам пользователей, показания таких приборов довольно часто бывают ложными, а сами они быстро ломаются.

Как правило, это объясняется следующими причинами:

  • данные поступают только из одного элемента батареи из шести, а ведь уровень жидкости в них может значительно разниться;
  • детали индикатора, выполненные из пластика, не выдерживают температурного режима работы аккумулятора, поэтому данные поступают неверные;
  • индикаторы-поплавки никак не определяют температуру электролитической жидкости, а ведь от нее зависит и плотность, поэтому электролит пониженной температуры покажет нормальный уровень плотности, в то время как она тоже будет низкой.

Заводские индикаторы в виде панелей

В специализированных магазинах можно найти множество разных контролирующих устройств для аккумулятора, дизайн и функции каждый автовладелец может подобрать под себя. Разнятся индикаторы и по способу подключения: к прикуривателю или в бортовую сеть машины. Однако, основная задача у всех устройств одна – определить, насколько заряжен АКБ, и просигнализировать об этом.

Существуют индикаторы, которые надо собрать самостоятельно, как конструктор. Как пример – DC-12 В. Он дает возможность контролировать заряд батареи, а также работу регулирующего реле.

Такое небольшое контрольное устройство работает в диапазоне от 2,5 до 18 вольт, электричества потребляет совсем мало – до 20 миллиампер, размеры индикаторного окошка – 4,3 на 2 см.

Если ставится второй аккумулятор в автомобиль, можно воспользоваться индикатором от ТМС, – это небольшая панель из промышленного алюминия на светодиодах со встроенным вольтметром и переключателем между смежными АКБ.

Из дорогих моделей (причем необоснованно дорогих, по цене нового аккумулятора) можно выделить контроллеры напряжения американской фирмы «Faria Euro Black Style». Цвет корпуса, как правило, черный, диаметр индикационного окошка – 5,3 см, экран подсвечивается белым цветом. Для питания необходимо 12 вольт.

Как собрать индикатор заряда самостоятельно

Если автовладелец дружит с паяльником, он может собрать анализатор своими руками, схем сборки можно найти множество. С помощью одной, самой простой, можно собрать индикатор заряда, напоминающий вышеописанный DC-12 В. Действует он по тем же принципам: включается в бортовую сеть и определяет напряжение АКБ в пределах 6-14 вольт.

Для сборки устройства будут нужны транзисторы, резисторы, стабилитроны, печатная плата и по одному красному, синему и зеленому светодиоду. После сборки, согласно схеме, плата вставляется на приборную панель, а концы светодиодов проводятся в удобное для обзора место. При этом полностью заряженный аккумулятор будет индицироваться зеленым цветом, синий – при нормальном заряде (от 11 до 13 вольт), а если батарея близка к разрядке, загорится красный светодиод.

Неприятно, когда автомобиль не может завестись просто от того, что аккумулятор разрядился в самый неподходящий момент. Индикатор напряжения, купленный в магазине или спаянный самостоятельно, поможет избежать неприятных «сюрпризов» и заранее предупредит о том, что АКБ требует подзарядки.

Видео

Самое удивительное то, что схема индикатора уровня заряда аккумуляторной батареи не содержит ни транзисторов, ни микросхем, ни стабилитронов. Только светодиоды и резисторы, включенные таким образом, что обеспечивается индикация уровня подведенного напряжения.

Схема индикатора

Работа устройства основывается на начальном напряжении включения светодиода. Любой светодиод - это полупроводниковый прибор, который имеет граничную точку напряжения, только превысив которую он начинает работать (светить). В отличии от лампы накаливания, которая имеет почти линейные вольтамперные характеристики, светодиоду очень близка характеристика стабилитрона, с резкой крутизной тока при увеличении напряжения.
Если включить светодиоды в цепь последовательно с резисторами, то каждый светодиод начнет включаться только после того, как напряжение превысит сумму светодиодов в цепи для каждого отрезка цепи в отдельности.
Порог напряжения открытия или начала загорания светодиода может колебаться от 1,8 В до 2,6 В. Все зависит от конкретной марки.
В итоге, каждый светодиод загорается только после того, как загорелся предыдущий.


Схему я собрал на универсальной монтажной плате, спаяв вывода элементов между собой. Для лучшего восприятия я взял светодиоды разных цветов.
Такой индикатор можно сделать не только на шесть светодиодов, а к примеру, на четыре.
Использовать индикатор можно не только для аккумулятора, но для создания индикации уровня на музыкальных колонках. Подключив устройство к выходу усилителя мощности, параллельно колонке. Тем самым можно отслеживать критические уровни для акустической системы.
Возможно найти и другие применения этой, по истине, очень простой схемы.

С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью .

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.