Что внутри акустической системы. Акустика. Типы акустических систем Для чего нужны шипы

Руководитель фирмы "Валанкон", один из инициаторов проведения и активный участник выставки "Российский Hi-End", рассказывает в статье об особенностях акустических систем с круговой диаграммой направленности, а также о вариантах их конструкции.

Основная задача электроакустического звуковоспроизведения (в самом идеализированном варианте) - обеспечить соответствие вторичного звукового поля в месте прослушивания первичному в месте, где происходит само действие. Находясь на улице, в лесу, в поле или в любом другом месте, прислушавшись, мы совершенно свободно можем локализовать источники этих звуков со всех сторон. Большинство источников звуков в окружающем нас мире близки к точечным (в сравнении с длиной волн звуковых колебаний). От этих источников исходит динамически меняющийся спектр частот и, в зависимости от местоположения источника звука над уровнем пола или земли, формируется полусферическая или сферическая волна. Возможно, мне возразят, приведя пример колеблющейся струны, но давайте возьмём электрогитару, на которой звукосниматель размещён ближе к концу струн. Вроде должны быть только высокие частоты, но звукосниматель передаёт широкий спектр частот. С каждого участка струны можно снять практически весь спектр частот колебаний.

Мысленно представим себе следующий эксперимент: в стене комнаты без окон на расстоянии, например, 2 м вырезаны два выходящих на улицу отверстия диаметром, равным диффузору громкоговорителя. Таким образом, мы получим эквивалент акустической системы, обладающей разной диаграммой направленности для различных частот, причём для высоких частот диаграмма будет уже. Мы сидим в комнате и стараемся понять, что происходит на улице. А теперь выйдем на улицу - звуки будут окружать нас.

Именно к воссозданию пространственного звукового поля и направлены усилия разработчиков акустических систем пространственного поля (АСПП). Большинство существующих систем - векторные, т. е. направленного излучения хотя бы в части полосы звуковых частот.

Задача озвучивания помещения состоит в том, чтобы наполнить его равномерным звуковым полем (давлением) во всех его точках без максимумов и провалов. Представим такой эксперимент - зеркальная комната, и её надо равномерно осветить. Если мы возьмём фонари направленного света (векторные излучатели), то получим отдельные лучи света, отражённые от зеркальных стен, будут максимумы и провалы. Если мы возьмём ненаправленную матовую лампу (или две разнесённые лампы), то получим заполненное более равномерно светом помещение. Из этого эксперимента мы получим вывод: менее направленное излучение звука от АС создаёт более равномерное звуковое поле.

Применяемые динамические головки, как источники звука, не позволяют воспроизвести весь слышимый диапазон частот без заметных искажений. Для решения этой проблемы выпускают полосовые головки, оптимизированные для своей полосы частот. Таким образом, АС состоят из нескольких головок, разнесённых на передней панели громкоговорителей, и на каждую из полосовых головок подаётся только часть спектра звукового сигнала, причём каждая из этих головок имеет свою диаграмму направленности.

В многополосных АС с разнесёнными динамическими головками существуют некоторые проблемы: разное время задержки сигналов в полосах из-за задержки в фильтрах кроссовера, неточечность излучения спектра звука, что приводит к смещению диаграммы направленности в области разделения полос. Различная диаграмма направленности полосовых излучателей, в зависимости от места размещения слушателей, приводит к тембральной окраске звучания музыкальных инструментов.

Вывод: вторичное звуковое поле принципиально не может соответствовать первичному - рис. 1. Возникает неизбежный вопрос - что делать?

Рис. 1. Вторичное звуковое поле принципиально не может соответствовать первичному

Сначала немного истории. В 1898 г. Оливером Лоджем изобретён динамический громкоговоритель, конструкция которого в основном сохранилась до сих пор. В 1948 г. на Лондонском "Радио-шоу" был представлен первый громкоговоритель "DualConcentric" фирмы Tannoy, это первый двухполосный коаксиальный излучатель, эквивалентный точечному.

Это действительно был прорыв, который сохраняет свои преимущества до настоящего времени, однако у коаксиального громкоговорителя с рупорным высокочастотным излучателем очень невелика область комфортного прослушивания из-за обострения направленности с ростом частоты сигнала. В коаксиальной конструкции высокочастотный излучатель находится в вершине конуса низкочастотного излучателя, который выполняет функцию подвижного(!) рупора, влияя на тембральную окраску в зависимости от положения слушателя.

Следующий шаг к созданию АСПП сделал инженер В. И. Шоров. Разработанная им акустическая система 30АС103П выпускалась заводом "Янтарь" и была описана в . Это двухполосная АС, где две динамические головки установлены в горизонтальной плоскости и направлены каждая на свой рассеивающий конус, переводя векторное излучение в скалярное (ненаправленное). Так как высокочастотный излучатель (головка) установлен над низкочастотным, то абсолютно точечного источника мы не получаем, но в горизонтальной плоскости получается источник с круговой диаграммой направленности.

Ещё одним шагом к созданию точечного всенаправленного (точнее, с диаграммой излучения) источника звука явилась конструкция (рис. 2), предложенная Ю. Грибановым и А. Клячиным.

Рис. 2. Конструкция АС Ю. Грибанова и А. Клячина

В ней на шести гранях корпуса АС установлены шесть пар головок. Эту АС нельзя назвать АСПП, так как присутствует векторная составляющая излучения. Но она является точечным всенаправленным источником звука. Есть ещё один недостаток: одинаковый сигнал излучается несколькими головками и невозможно добиться их синхронной работы и идентичности параметров. Это может приводить к потере тончайших нюансов звучания фонограммы.

Более полно идеологии АСПП соответствует так называемая контрапертурная АС (рис. 3), предложенная А. Виноградовым и А. Гайдаровым.

Рис. 3. Контрапертурная АС, предложенная А. Виноградовым и А. Гайдаровым

Создаётся виртуальный точечный всенаправленный источник звукового давления в полной полосе ЗЧ. Вертикальная составляющая звуковой волны несколько подавлена. Но мы опять возвращаемся к той же проблеме, что и в предыдущем случае, - не получается абсолютно симметричной структуры. На высоких частотах звуковые волны, излучаемые двумя головками, могут не совпадать по фазе, и возникшая интерференция приведёт к искажению исходного тембра. Искажения, конечно, меньше, чем в предыдущем способе (меньше головок), но проблема остаётся. Есть ещё одна проблема, связанная с подобной конструкцией. Использование двух широкополосных головок не всегда позволяет воспроизвести необходимый диапазон частот, даже если использовать коаксиальные (двухполосные). Необходимую трёхполосность в такой структуре реализовать не представляется возможным.

Принцип работы третьего типа АСПП легко понять из конструкции, условно изображённой на рис. 4. Исключение половины комплекта громкоговорителей контрапертурной АС позволяет избежать свойственных ей недостатков. Здесь также излучаются звуковые волны с круговой диаграммой направленности во всём диапазоне частот.

Рис. 4. Принцип работы третьего типа АСПП

В настоящее время наша фирма, имеющая ряд патентов на подобные АС, выпускает АСПП по двум структурам. Двухполосные, изготовленные по рис. 5, выпускаются в трёх объёмах: 5, 10 и 40 л для бытового использования в жилых комнатах. Для небольших кинозалов выпускается специальная АСПП мощностью 1000 Вт, обеспечивающая высокое звуковое давление. Структура АСПП, изображённая на рис. 6, реализует трёхполосный принцип разделения спектра, что существенно упрощает проблему подбора головок. Среди изделий фирмы есть и АСПП с объёмом корпуса 70 л, она рассчитана на высококачественное воспроизведение стереофонических фонограмм.

Рис. 5. Двухполосная АСПП

Рис. 6. Трёхполосная АСПП

Если говорить об особенностяхАСПП, то в сравнении с АС прямого излучения можно предположить некоторое ослабление атаки в звучании инструментов, так как звук излучается во все стороны, а не направленно на слушателей.

Но что даёт использование подобных АС в реальных помещениях? Создаётся ровное пространственное звуковое поле - где бы вы ни находились, везде звук тембрально одинаков. Стоите вы перед АС или сбоку - звук не меняется, вас окружает однородное звуковое поле. Получается очень комфортное озвучивание больших площадей: необыкновенное ощущение комфортности и эмоциональной вовлечённости создают среду, недостижимую с обычными АС. Показанные здесь три типа АСПП не исчерпывают всего многообразия различных вариантов.

Утверждать однозначно, что какой-то звук лучше или хуже другого при превышении некоего порога качества, в значительной степени бессмысленно: восприятие - это область эмоций, а они разные, поэтому есть множество усилителей и акустических систем. Но что однозначно - этот звук ближе к окружающему нас естественному.

В качестве примера рассмотрим выпускаемую нашей фирмой акустическую систему АС200. Эта система изготавливается в настольном и подвесном варианте с применением динамических головок, выпускаемых ООО "Лаборатория АСА" . Мы используем в качестве НЧ-головки модель В1602.8, а в качестве ВЧ-головки - Т252.4. На рис. 7 приведён упрощённый чертёж АС.

Рис. 7. Упрощённый чертёж АС

Подобная вертикальная конструкция АС позволяет использовать в качестве корпуса трубу, что выгодно отличает её от стандартных кубических корпусов. В качестве корпуса 11 (рис. 8) выбрана пластиковая труба ПВХ 200x4,9x2000, используемая, в частности, в канализационных системах. Одной трубы длиной 2 м достаточно для двух АС. Кольца 1, 2, 6, 10 изготавливают из МДФ толщиной 16 мм. На рис. 9 приведён чертёж деталей 2, 6. Детали крепят к корпусу потайными саморезами 3x19 мм (3-4 шт.). На деталь 2, установленную в нижней части корпуса, крепится фильтр 9, она имеет отверстие для вывода сигнального провода. Деталь 6, на которой установлены динамические головки, крепится в корпусе 11 с условием, что верхняя плоскость кольца установлена заподлицо с нижним краем окон корпуса 11. Для прокладки провода, идущего к ВЧ-головке 4, в одно из крепёжных отверстий НЧ-головки 5 не устанавливают саморез, а пропускают провод на ВЧ-головку, которую закрепляют любым способом (на бонках, на конструкции, спаянной из медной проволоки диаметром 1...1,5 мм) и фиксируют саморезами, которые крепят НЧ-головку. Основное требование - это обеспечение необходимого зазора между диффузором ВЧ-головки и рассеивающим конусом 3. Конус, показанный на рис. 10, можно изготовить из МДФ или толстого пластика. Для придания жёсткости пластиковый конус можно запенить.

Рис. 8. Корпус АС - пластиковая труба ПВХ 200x4,9x2000

Рис. 9. Чертёж деталей 2, 6

Рис. 10. Пластиковый конус

Желательна глянцевая, лакированная поверхность конуса для уменьшения потерь на высоких частотах. Конус фиксируется на детали 2 с помощью клея.

В качестве звукопоглотителя используется тонкий синтепон, который набивают плотно; критерием плотности набивки является отсутствие бубнения в низкочастотном регистре. Можно попробовать насыпать слой толщиной 5...10 см мелкого активированного угля, который обязательно сверху закрыть синтепоном.

Детали 1 и 10 определяют внешний вид, их можно покрасить или фанеровать. Деталь 1 крепится к детали 2 на шкантах или мелкими саморезами, а деталь 10 - саморезами, с выпуском соединительного кабеля.

Для придания АС товарного вида можно пошить "чулок" из тонкой синтетической ткани и прикрепить её степлером к верхней и нижней детали 2.

Схема разделительного фильтра показана на рис. 11.

Рис. 11. Схема разделительного фильтра

Катушку индуктивности L1 наматывают эмалированным проводом диаметром 0,5...0,8 мм на пластиковую трубу диаметром 25 мм, ширинанамотки - 20 мм. 120 витков провода длиной 10,2 м создают индуктивность 0,3 мГн. Конденсатор С1 - К73-17 или К78-2 (лучше). Резистор R1 сопротивлением 0,2 Ом изготавливают из высокоомной проволоки: берут кусок длиной несколько метров, измеряют его сопротивление и откусывают соответствующую нужному сопротивлению часть. Диаметр проволоки должен быть не менее 0,2 мм. Фазу (полярность) включения головок определяют опытным путём. Здесь на схеме показана полярность, оптимизированная при измерении на "розовом" шуме.

Литература

1. Шоров В., Янков В. Акустическая система для самостоятельного изготовления. - Радио, 1997, № 4, с. 12-14.

Диаграмма направленности (ДН) определяет угол в котором прослушивание звукового материала воспроизводимого акустической системой будет комфортным, без потери тонального баланса. В стерео режиме кроме этого ДН будет определять характеристики звуковой сцены такие как стабильность положения источников звука в пространстве (например правильное перемещение по сцене скрипача — так чтобы это был скрипач (тональный баланс), чтобы не изменялся в пропорциях (музыкальный баланс) и верность местоположения относительно других источников и слушателя).

Диаграмма направленности измеряется в градусах, обычно в двух плоскостях, горизонтальной и вертикальной (бывает и в трехмерной версии, нужна специальная программа). Обычно измеряют падение звукового давления на 6 или 10 дБ относительно осевого излучения головки.

Для разных частот у одного и того же динамика ДН будет разной. Обычно с ростом частоты ДН почти линейно сужается.

ДН зависит от размера головки (при одной и той же частоте). Чем больше размер динамика, тем уже ДН. У овалов ДН шире в узкой части и наоборот.

В автомобиле, используя динамики с разной ДН, можно добиваться разных результатов. Не всегда динамик с широкой ДН есть хорошо. Обычно динамик с узкой ДН удачно используют в системах где сцена строится на отражении от лобового стекла или наоборот в лицо, так чтобы не было дополнительных отражений от обшивок, стекол….

ДН можно управлять. Например вращать овальные динамики или использовать звукопоглатительный кофр вокруг пищалки. Конечно, об этом не забывают производители. Все пули, воротнички, сложные конструкции перед диффузорами динамиков (в основном пищалок) сделаны не только для выравнивания АЧХ, но больше для выравнивания ДН в более широком частотном диапазоне.

На конечную ДН влияет посадочное место динамика — его звукопоглатительные свойства и форма.

На практике, чем меньше размер мидвуфера тем шире ДН. Так 13 в дверях лучше отыграют чем 16 ,а 10 см еще лучше. Но это только по ширине ДН. Нельзя забывать про драйв и мощность, которую лучше выдадут динамики повышенного типоразмера.

Суммарная ДН в 2-компонентной системе и коаксиальной разные. У коаксиальной акустики она более ровная. Для компонентной акустики ДН будет сужаться в вертикальной плоскости при вертикальном расположении динамиков. Т.е. даже расположением пищалок относительно мидов можно менять ДН. Но здесь надо учитывать частотный диапазон совместной работы динамиков. Если он узкий, то у мида будет своя ДН, а у пищалки своя. На ДН также влияет кроссовер, его частоты среза и крутизна.

Итак. ДН динамика важнейшая его характеристика, которая существенно влияет на восприятие воспроизводимого акустикой звука и его верность. ДН можно и нужно управлять в процессе создания акустической системы высокого класса.

В обзорах и тестах мы уделяем большое внимание описанию акустических систем. Если подумать, то ничего удивительного в этом нет. Прекрасно понимая важность качественного источника звука и усилителя в стереосистеме или в домашнем кинотеатре, мы все же уверены, что наибольшее влияние на звуковые характеристики аудиокомплекса оказывают именно колонки. Они являются последним звеном в сложной цепи преобразования комбинации нулей и единиц, из которых состоит запись на компакт-диске, в механические колебания воздуха, которые мы и называем звуком. Чем корректнее колонки справляются со своей задачей, тем более качественный звук мы слышим. Впрочем, вопрос «качества звука» - весьма спорный, поскольку качество - понятие субъективное. Вернемся к этому вопросу несколько позже, а для начала познакомимся с основными конструктивными особенностями современных акустических систем (АС). Кроме того, в данном материале мы хотим разобраться с таким интересным вопросом, как направленность акустических систем различной конструкции, и какой из них отдать предпочтение для решения той или иной задачи.

Прежде чем перейти к описанию конструкции акустических систем, необходимо разобраться с терминологией, чтобы не возникало путаницы в дальнейшем. Итак, полный акустический преобразователь, предназначенный для излучения звука в окружающую среду и состоящий из динамических головок, акустического оформления, разделительных фильтров и прочих электрических устройств, мы будем называть акустической системой, звуковой колонкой или громкоговорителем. Обратите внимание на последнее название. В английском языке термином «loudspeaker», т. е. «громкоговоритель», принято называть полную акустическую систему, в то время как в отечественной литературе этим словом частенько называли отдельные динамические головки. Сами динамические головки принято называть также драйверами или динамиками. Этих же терминов будем придерживаться и мы в нашем описании.

ДИНАМИЧЕСКИЕ ГОЛОВКИ

На сегодняшний день в мире существует множество разнообразных конструкций громкоговорителей, базирующихся на самых различных физических принципах излучения звука (электростатические, плазменные, пьезокерамические и пр.). К рассказу об экзотических конструкциях громкоговорителей мы постараемся вернуться в одном из последующих выпусков V&A, сегодня же сосредоточим наше внимание на самых распространенных акустических системах - с электродинамическими катушечными преобразователями.
Задачей электродинамической акустической головки является, как вы знаете, преобразование электрических импульсов в механические колебания диффузора динамика, которые становятся источниками распространения звуковых волн.
Принцип действия электродинамического преобразователя прост, как все гениальное. Переменный электрический ток, проходя через звуковую катушку, является источником переменного магнитного поля, которое, в свою очередь, вступает во взаимодействие с полем постоянного магнита. Результатом этого взаимодействия становится появление силы, которая приводит в движение звуковую катушку, жестко соединенную с диффузором динамика.
Основными элементами электродинамической головки являются диффузор с пылезащитным колпачком и гибким подвесом, звуковая катушка, магнитная система, диффузородержатель (корзина) и центрирующая шайба.
Подробное описание перечисленных элементов конструкции электродинамического драйвера проведем для низкочастотной головки, а затем рассмотрим нюансы, характерные для средне- и высокочастотных динамиков.

Диффузор

Задача диффузора электродинамической головки очень важна - он приводит в движение массы воздуха, его перемещение вызывает появление распространяющейся в пространстве звуковой волны. При этом диффузор должен обеспечивать отсутствие нелинейных искажений, вызываемых изгибными волнами на его поверхности, и максимально линейную амплитудно-частотную характеристику в рабочем диапазоне. Большинство диафрагм в современных низкочастотных динамиках имеют форму конуса (их так и называют - конические). Впрочем, форма обычного конуса с прямолинейной образующей оказалась малоподходящей для производства НЧ динамиков, поскольку такие диффузоры не обладают устойчивостью к появлению изгибных волн. Действительно, для обеспечения необходимого уровня звукового давления на низких частотах требуется, чтобы диффузор претерпевал значительные смещения в пространстве (±10 мм, а иногда и больше). При таких значительных смещениях поверхность диффузора начинает изгибаться, а при повышении частоты края диафрагмы просто не успевают смещаться вслед за перемещением звуковой катушки, вследствие чего рабочая поверхность диффузора ограничивается небольшой центральной областью. Для того чтобы избежать этих двух напастей (сужение эффективной поверхности излучения диффузора и появление изгибных волн на поверхности), производители очень тщательно относятся к разработке формы поверхности излучателя. В частности, используются диффузоры в форме конуса с образующими в виде дуги окружности, а также с другими, еще более сложными конфигурациями. Благо современные методы математического моделирования позволяют достаточно точно рассчитать оптимальную форму излучателя. Главное, чтобы в результате она оказалась не слишком сложной для производства. Многие применяют конусы с переменным сечением стенок (толщина диафрагмы больше в центре и уменьшается к краям), снабжают диафрагмы специальными ребрами жесткости (радиальными или концентрическими) и естественно тщательно подбирают материалы для их производства.
О материалах, кстати, хотелось бы рассказать чуть подробнее. С самого начала при производстве диафрагм динамических головок использовали бумагу со специальными пропитками. Надо сказать, что натуральная длинноволокнистая целлюлоза до сих пор остается одним из самых популярных материалов. Естественно, называть такие диффузоры бумажными сегодня уже не совсем корректно, поскольку в них помимо специальной пропитки, повышающей жесткость, долговечность и влагозащищенность целлюлозной массы, часто применяются различные добавки, такие, как волокна льна, углестекловолокно, графит и даже металл. В общей сложности «бумажный» диффузор громкоговорителя может содержать до 15 различных добавок, призванных улучшить его физические свойства.

Звуковая катушка

Звуковые катушки современных динамиков являются достаточно технологичными изделиями, хотя на первый взгляд ничего сложного в них нет. Однако это только на первый взгляд. Начав разбираться, понимаешь, что все не так просто, как хотелось бы.
Во-первых, звуковая катушка должна иметь высокие характеристики температурной стабильности. Это особенно важно в мощных системах, где при звуковоспроизведении выделяется большое количество тепла. Нагревание может привести к механическому разрушению катушки, поэтому при их производстве применяются специальные термостойкие клеи и лаки. Кроме того, нагрев, как известно из школьного курса физики, изменяет электрическое сопротивление провода, которым намотана катушка. Изменение сопротивления естественно приводит к нарушению рассчитанных для магнитной системы параметров, что воспринимается на слух как искажения в воспроизводимом звуке. Для того чтобы снизить нагрев звуковых катушек применяют, как мы уже упоминали, специальные массивные металлические пылезащитные колпачки, а также делают вентилируемые каркасы, в которых для улучшения теплоотвода сверлят специальные отверстия. Еще одним способом охлаждения служит заполнение магнитного зазора специальной ферромагнитной жидкостью, но об этом мы расскажем чуть позже, в пункте, посвященном магнитной системе.
Звуковые катушки наматываются проводом круглого или прямоугольного сечения. Количество слоев намотки, как правило, 2 или 4. Прямоугольное сечение провода в принципе более предпочтительно, поскольку позволяет сделать намотку максимально плотной, а, следовательно, увеличить эффективность взаимодействия катушки с постоянным магнитом. Однако же с увеличением плотности намотки ухудшается охлаждение звуковой катушки, а, следовательно, нарушается температурная стабильность. В результате производители вынуждены искать компромисс, подбирая оптимальное сочетание параметров. Вообще, говоря отвлеченно от технических деталей, нужно признать, что производство высококачественных акустических систем - это постоянный поиск компромисса между соблюдением ряда взаимоисключающих условий. Некоторые из них мы уже упомянули, а некоторые будут упомянуты в дальнейшем. Искусство разработчика заключается в поиске оптимального решения этой сложнейшей задачи с рядом переменных, влияющих друг на друга. Однако вернемся к звуковым катушкам. Естественно, что их температурную стабильность можно увеличить, используя для намотки провод большего сечения, а, следовательно, и с лучшей теплоотдачей. Впрочем, такое решение подходит только для мощных акустических систем, поскольку неизбежно увеличит общую массу подвижной системы, что, как мы уже говорили, крайне негативно сказывается на характеристиках воспроизводимого звука.
Помимо температурной стабильности звуковой катушки производители динамиков стремятся также соблюсти пространственную однородность магнитного поля в зазоре. Дело в том, что при больших амплитудах перемещения диффузора катушка может частично выходить из магнитного зазора в продольном направлении, попадая при этом в область нестабильного магнитного поля. Для предотвращения этого многие производители стремятся сделать катушку максимально короткой, а зазор максимально длинным (естественно, при сохранении минимально возможной толщины).

Магнитная система

Магнитная система динамической головки призвана создавать постоянное магнитное поле, которое взаимодействует с переменным полем, создаваемым током, проходящим через звуковую катушку. В большинстве современных динамических головок применяются кольцевые магниты, имеющие форму тора. Естественно, что для увеличения эффективности работы электродинамического преобразователя необходимо, чтобы магнитная система создавала максимально возможную напряженность магнитного поля в зазоре. Для этого разрабатываются высокоэффективные магнитные материалы (в частности в последнее время получили широкое распространение магниты на основе сплава неодим-железо-бор). Как мы уже говорили, для того, чтобы сохранить линейные частотные характеристики в широком диапазоне подводимой мощности, катушки необходимо хорошо охлаждать. Вместе с тем увеличение воздушного зазора между катушкой и магнитной системой нежелательно, поскольку это снижает эффективность их взаимодействия. Для решения этой проблемы магнитный зазор иногда заполняют специа
ьной ферромагнитной жидкостью, которая представляет собой вязкую суспензию с помещенными в нее магнитными частицами. Ферромагнитная жидкость обладает существенно большей теплоемкостью по сравнению с воздухом и, следовательно, позволяет гораздо эффективнее охлаждать звуковую катушку.
Не стоит забывать и о том, что в современных системах домашнего кинотеатра акустические системы зачастую работают в непосредственной близости от экрана телевизора. Магнитное поле динамика может вызывать искажения на экране. Для того чтобы избежать этого отвратительного явления, акустические системы центрального канала (как расположенные ближе всего к телевизору), а зачастую и все остальные громкоговорители, включая сабвуфер, снабжают магнитным экранированием, т. е. помещают магнитную систему в специальную «колбу», изготовленную из экранирующего материала, либо же включают в систему дополнительный магнит обратной полярности, который гасит магнитное поле основного магнита.

Диффузородержатель

Диффузородержатель, как следует из названия, представляет собой конструкцию, несущую всю систему динамической головки. За характерный внешний вид диффузородержатели получили также и другое название - корзина. К широкой части корзины при помощи подвеса крепится подвижная часть драйвера, а к узкой - магнитная система. Естественно, корзина динамика должна вносить минимальный вклад в воспроизведение звука, поэтому ее конструкция должна быть жесткой и эффективно гасить возникающие резонансы. Кроме того, ребра жесткости диффузородержателя должны быть максимально тонкими, чтобы свести к минимуму отраженную от них звуковую волну. При несоблюдении этого условия отраженная волна будет оказывать существенное влияние на работу динамической головки, увеличивая общую упругость системы и, следовательно, снижая эффективность электродинамического преобразователя.

Центрирующая шайба

Последним из упомянутых нами в начале статьи элементом динамика является центрирующая шайба. Основной функцией центрирующей шайбы является четкое позиционирование звуковой катушки в зазоре. Она должна обеспечить строго поступательное движение катушки, поскольку малейший перекос может привести к ее заклиниванию в магнитном зазоре. Центрирующая шайба должна обладать линейными характеристиками упругости во всем диапазоне смещения диффузора и, как правило, представляет собой гофрированную поверхность, имеющую синусоидальный профиль.

Среднечастотные динамики

Все, о чем мы говорили до сих пор, справедливо в первую очередь для динамиков, предназначенных для воспроизведения низких частот. Впрочем, основные элементы конструкции СЧ и ВЧ динамиков точно такие же. Разница заключается в конструктивном исполнении.
Разработка и конструирование среднечастотных динамиков является, наверное, одной из важнейших задач при производстве акустической системы. Во-первых, именно на область средних частот приходится большая часть воспроизводимого звука. Во-вторых, человеческий слух обладает наибольшей чувствительностью именно в среднечастотном диапазоне. Наконец, нельзя не отметить, что именно к среднему частотному диапазону относится человеческий голос (по крайней мере большая часть из его тембров). Последнее обстоятельство крайне важно учитывать, ведь человек слышит голос в реальной жизни постоянно, и наш мозг прекрасно научился анализировать все мельчайшие нюансы его звучания. Малейшее несоответствие, и человек, даже не считающий себя профессиональным ценителем классной аудиотехники, почувствует фальшь, а, следовательно, удовольствие от прослушивания будет испорчено.
Конструкция СЧ динамиков в целом аналогична низкочастотникам, за исключением того, что они, как правило, имеют меньшие геометрические размеры диафрагмы (это позволяет расширить диаграмму направленности в верхней части воспроизводимого диапазона). Большинство среднечастотников имеют конусообразную диафрагму, хотя иногда применяются и купольные динамики (как правило, для озвучивания верхней части среднечастотного диапазона), которые имеют более широкую характеристику направленности в области высоких частот и могут иметь как жесткие диафрагмы, изготовленные из алюминиевой бериллиевой или титановой фольги, так и мягкие, выполненные из шелка, целлюлозы, полипропилена и т. д.

Высокочастотные динамики

В последнее время с появлением и успешным развитием цифровых форматов записи звука требования, предъявляемые потребителями, а, следовательно, и производителями, к высокочастотным динамикам существенно возросли. Мы связываем это в первую очередь именно с развитием цифровых технологий, поскольку раньше, когда были распространены только записи на магнитной ленте, частотный диапазон фонограмм был ограничен сверху значениями 12-15 кГц. Выше не помогали никакие, даже самые продвинутые системы (включая пресловутую систему динамического подмагничивания HX Pro фирмы Dolby). Сейчас ситуация кардинально изменилась. Обычный компакт-диск без проблем обеспечивает звуковой сигнал в диапазоне 20-20 000 Гц, а если вспомнить про современные форматы высокого разрешения SACD и DVD-Audio, то и гораздо выше.
При изготовлении ВЧ-динамиков (твитеров) в подавляющем большинстве случаев используются купольные мембраны. В этом нет ничего удивительного, поскольку куполообразная форма обеспечивает более широкую диаграмму направленности по сравнению с конусом. Впрочем, на самых высоких частотах характеристика направленности в любом случае представляла бы собой узкий луч, если бы ее не расширяли искусственно при помощи звуковых рассекателей, устанавливаемых перед твитером, либо специального оформления высокочастотника в виде акустической линзы.
Несмотря на разительные внешние отличия, конструкция твитера во многом совпадает с низко- и среднечастотниками. Следует отметить, что подвес диффузора в них выполняется из того же материала, что и сам диффузор. Кроме того, в высокочастотниках отсутствует центрирующая шайба. Вследствие малых амплитуд колебаний подвижной системы такое решение представляется вполне оправданным.
Диафрагмы твитеров можно условно разделить на два класса - мягкие и жесткие. Жесткие купола изготавливаются обычно из фольги «крылатых» металлов (алюминий, титан и пр.). Мягкие же диафрагмы могут быть выполнены из ткани (как правило, шелка) со специальной пропиткой полипропилена и т. д. Интересно, что для придания мягким купольным твитерам необходимых физических свойств многие производители идут на крайне дорогостоящую процедуру осаждения из паровой фазы на его поверхность частиц бора, бериллия, золота и даже алмаза.

АКУСТИЧЕСКОЕ ОФОРМЛЕНИЕ

Итак, теперь мы более или менее представляем себе устройство динамических головок громкоговорителей и, понимаем, на какие ухищрения приходится идти производителям для того, чтобы повысить качество звуковоспроизведения, а, следовательно, доставить нам с вами максимум удовольствия от прослушивания. Однако, взяв отдельный динамик (пускай даже самого высокого качества) и подключив его к усилителю, мы обнаружим, что его звучание ужасно! В нем абсолютно отсутствуют привычные нам тембры и низкочастотные составляющие. Объяснение этого вопиющего факта заключается в том, что динамическая головка излучает не только вперед, но и назад. Если перед диффузором при его колебательном движении образуется зона сжатия воздуха, то позади него обязательно возникнет зона разрежения, и наоборот. При достаточно высоких частотах (т. е. при длинах звуковой волны существенно меньших геометрических размеров диффузора) звуковая волна не успевает обогнуть диафрагму за один период колебания, и ничего плохого со звуком не происходит. Однако при уменьшении частоты длина волны становится сравнима с диаметром диффузора и прямая и обратная волна, суммируясь, гасят друг друга (для диффузора диаметром 20 см частота, на которой начинает происходить это явление, составляет порядка 1 кГц). Данный эффект называется акустическим коротким замыканием и для настоящего аудиофила имеет последствия не менее катастрофические, чем короткое замыкание в домашней электросети. К счастью, данная проблема имеет достаточно простое решение, а именно, необходимо физически изолировать переднюю и заднюю поверхности диффузора. Для этого динамическую головку можно, к примеру, закрепить в стенке ящика, что собственно и делается в традиционных акустических системах. Этот «ящик», или если следовать правильной терминологии, «корпус» громкоговорителя принято называть акустическим оформлением.
Простейшим видом акустического оформления является герметично закрытый корпус акустической системы. Этот вид так и называется «закрытый корпус». Такая система отличается простотой конструкции и отменными переходными характеристиками (хорошей атакой и четкими акцентами), которые обусловлены высокой упругостью колебательной системы диффузор - внутренний объем корпуса. При всех своих преимуществах подобное акустическое оформление имеет и ряд недостатков. Одним из них является снижение эффективности работы громкоговорителя. Надо сказать, что электродинамический преобразователь и так крайне малоэффективное устройство (в лучшем случае в звуковую мощность удается преобразовать лишь около 3 % подводимой электрической мощности - остальное превращается в тепло). В закрытом же корпусе эта эффективность еще ниже, поскольку энергия, излучаемая обратной стороной диффузора, просто теряется. Кроме того динамик, помещенный в закрытый корпус, представляет собой колебательную систему с достаточно высокой резонансной частотой. При воспроизведении звука ниже этой частоты уровень звукового давления резко падает. Естественно, что значение резонансной частоты громкоговорителя сильно зависит от внутреннего объема его корпуса, но для озвучивания низкочастотной области этот объем должен быть очень большим, что неприемлемо для большинства людей в силу эстетических соображений.
Другая возможность добиться воспроизведения глубокого баса от закрытых акустических систем заключается в существенном усилении уровня низкочастотного сигнала по сравнению со средне- и высокочастотной составляющими. В традиционных стерео и кинотеатральных комплектах выполнение данного условия практически невозможно, а вот в активных акустических системах (т. е. громкоговорителях с собственными встроенными усилителями) вполне может быть реализовано. В частности, по такому принципу работают активные полочные акустические системы марки ATC - одни из лучших полочных мониторов, которые нам когда-нибудь доводилось слышать.
В более массовых акустических системах (да и не только в массовых, если уж быть до конца честными) производители вынуждены искать способ снижения нижней резонансной частоты громкоговорителя и увеличения его эффективности. Такое решение было найдено давно - еще в 30-е годы прошлого столетия, и имя ему фазоинвертор. Про фазоинверторное акустическое оформление в специализированной прессе сказано очень много - хорошего и плохого, по делу и не совсем. Мы не будем вдаваться в детали (в конце концов, для этого в нашем журнале регулярно публикуются масштабные тесты акустических систем), а просто констатируем факты. Во-первых, фазоинвертор позволяет реально повысить отдачу громкоговорителя в области низких частот. Во-вторых, более 90 % акустических систем, ориентированных на домашнее (не профессиональное) применение, имеют акустическое оформление типа «фазоинвертор», и не считаться с этим обстоятельством было бы по меньшей мере глупо.
Итак, что же представляет собой фазоинвертор? А представляет он собой обычное отверстие (порт), соединяющий внутренний объем корпуса громкоговорителя с внешним миром. В этот порт обычно вставляют кусок трубы, который позволяет увеличить объем воздуха, участвующего в процессе инвертирования фазы звуковой волны.
Фазоинвертор является, по сути, простейшим акустическим резонатором, т. е. представляет собой колебательную систему с упругим элементом, роль которого играет воздух в трубе. На определенных частотах в этой колебательной системе появляется резонанс, причем параметры фазоинвертора рассчитываются таким образом, чтобы резонансная звуковая волна излучалась в той же фазе, что и прямая волна, излучаемая диффузором. Иными словами, это нехитрое устройство производит инверсию (обращение) звуковой волны, которая излучается тыльной стороной диффузора. Фазоинвертор позволяет снизить значение нижней граничной частоты громкоговорителя и усилить звуковое давление на низких частотах за счет суммирования прямой волны, излучаемой фронтальной поверхностью диффузора и обратной волны, «обращенной» фазоинвертором.
Достоинства фазоинверторных акустических систем следуют из приведенных выше рассуждений. При одинаковых размерах они способны воспроизводить гораздо более низкие частоты по сравнению с АС в закрытом корпусе. К недостаткам фазоинверторных конструкций можно отнести ухудшение переходных характеристик в области частот, на которые настроен фазоинвертор. Поскольку фазоинвертор является акустическим резонатором, то контролировать излучаемый им звук достаточно трудно. На слух это воспринимается как ухудшение детальности, т. е. более размытое звучание низких частот. Еще одним минусом фазоинверторных конструкций являются нелинейные звуковые искажения, вызванные турбулентными завихрениями воздуха, «выдуваемого» из порта. Для того, чтобы минимизировать этот эффект, производители придают выходным раструбам специальную форму, а также наносят на их поверхность специальные канавки, препятствующие возникновению воздушных завихрений.
Частным случаем фазоинверторного акустического оформления можно считать громкоговорители с пассивным излучателем (такие конструкции, к примеру, очень любит американская компания Boston Acoustics). Вместо того чтобы вставлять в порт фазоинвертора трубу, он просто закрывается еще одним излучателем, аналогичным основному низкочастотнику, но лишенным звуковой катушки и магнитной системы. Настройка резонансной частоты такой конструкции осуществляется производителем путем изменения массы пассивного излучателя. Как правило, в акустических системах используется один порт фазоинвертора, но в отдельных моделях применяются двух- и даже трехпортовые конструкции. В зависимости от конструкции порт фазоинвертора выводится на переднюю или на заднюю панель громкоговорителя. В отдельных случаях порт фазоинвертора направлен вниз - в этом случае производитель предусматривает специальную подставку, обеспечивающую необходимый воздушный зазор между корпусом АС и полом.

РАСПОЛОЖЕНИЕ ДИНАМИКОВ НА КОРПУСЕ АКУСТИЧЕСКОЙ СИСТЕМЫ
И ХАРАКТЕРИСТИКИ НАПРАВЛЕННОСТИ

Мы уже имели возможность убедиться, что динамические головки, предназначенные для воспроизведения низких, средних и высоких частот, имеют ряд конструктивных отличий. Эти отличия не позволяют (по крайней мере за приемлемые деньги) изготовить электродинамический преобразователь, способный качественно воспроизводить звук во всем слышимом частотном диапазоне. В связи с этим в конструкции акустических систем применяется несколько динамиков, каждый из которых отвечает за свою область воспроизводимых частот. Для того чтобы оградить динамики от сигналов с частотой, на воспроизведение которой они не рассчитаны, а также скорректировать фазовые сдвиги между ними, в конструкции акустических систем применяют разделительные фильтры. Впрочем, подробно останавливаться на их конструкции в данном материале мы не будем.

Акустические системы с фронтальным расположением динамиков

Традиционным считается расположение динамиков в ряд на фронтальной панели акустической системы. На первый взгляд это решение представляется самым очевидным. Казалось бы, где же еще располагаться динамикам, как не на панели, направленной к слушателю? Все правильно, но не совсем. Впрочем, об этом чуть ниже…
Итак, что же происходит с характеристиками направленности звука, излучаемого акустической системой, с традиционным фронтальным расположением динамиков. На самом деле однозначный ответ на этот вопрос дать довольно трудно, поскольку на разных частотах направленность такой акустической системы тоже будет различной.
На низких частотах длина звуковой волны существенно превышает размеры динамиков, как, впрочем, и корпуса акустической системы. В связи с этим звук колонки с фронтальным расположением диффузоров на низких частотах будет очень слабо направленным. Диаграмма направленности является практически круговой. Кстати, именно с этим обстоятельством связано то, что сабвуфер в кинотеатральной системе можно помещать практически в любой точке комнаты прослушивания. Частоты, на которых он работает, не дают остро выраженной диаграммы направленности, и локализовать их источник на слух невозможно.
С увеличением частоты длина звуковой волны уменьшается, и диаграмма направленности вытягивается во фронтальном направлении. На высоких частотах звук можно считать остро направленным во фронтальном направлении (тонкими эффектами, такими, как боковые лепестки диаграммы направленности, а также дифракционные явления мы, в наших рассуждениях пренебрегаем), причем чем выше частота, тем более острую направленность имеет звучание.
При воспроизведении звука повышенная направленность акустических систем имеет определенные преимущества. В частности, она позволяет существенно повысить пространственное разрешение виртуальных звуковых источников, позволяет минимизировать отражения от стен комнаты прослушивания, т. е. делает звуковые образы более четкими, позволяя провести их точную локализацию в трехмерном пространстве. Все это, конечно, очень здорово в теории, но на практике далеко не так волшебно. Во-первых, качественную звуковую картину сможет получить только слушатель, сидящий строго в одной из вершин пресловутого стереотреугольника (речь идет о 2-канальном воспроизведении), т. е. на пересечении акустических осей громкоговорителей. При минимальном отклонении от этой точки звуковая картина будет серьезно нарушена. Естественно, что о прослушивании музыки или просмотре кинофильма в компании речь уже не идет.
Вот почему производители стараются различными методами расширить диаграмму направленности на высоких частотах. Для этих целей могут применяться специальные акустические рассекатели, устанавливаемые перед ВЧ-динамиком, либо специально разработанные оформления твитера в виде рупора или же звукового волновода. Данные ухищрения позволяют стабилизировать направленность на высоких частотах и управлять ее шириной в соответствии с пожеланиями производителей.
Не стоит забывать и о том, что динамики акустической системы, расположенные в ряд на ее фронтальной панели, представляют собой некое подобие антенной решетки, которая также имеет определенные характеристики направленности излучения. Если мы говорим о традиционных громкоговорителях, где динамики расположены в ряд один над другим, то такой громкоговоритель имеет выраженную характеристику направленности по вертикали, но при этом слабо направлен по горизонтали. Это, кстати, как нельзя лучше укладывается в требования THX к акустическим системам в домашнем кинотеатре, в соответствии с которым громкоговорители должны иметь строгую направленность в вертикальном направлении, чтобы минимизировать влияние звуковых отражений от пола и потолка и при этом иметь широкую дисперсию по горизонтали. Однако в домашнем кинотеатре, как вы знаете, необходима акустическая система центрального канала, которую большинство производителей предпочитает делать горизонтальной. Это существенно упрощает инсталляцию колонки (обычно под или над телевизором), но приводит к нежелательному результату с точки зрения акустики. Динамики такой колонки, расположенные в ряд горизонтально, излучают звук, слабо направленный по вертикали, но с выраженной характеристикой направленности по горизонтали. С точки зрения THX подобное поведение абсолютно недопустимо, поэтому центральный канал по версии лаборатории Джорджа Лукаса должен быть вертикальным, таким же, как и фронтальная стереопара. Если быть более точным, то в соответствии с этими требованиями все 5 акустических систем в домашнем кинотеатре должны быть одинаковыми, но это уже тема совершенно другой статьи.
К счастью, вертикальное расположение корпуса АС - не единственная возможность стабилизировать диаграмму направленности центрального канала. Здесь на помощь могут прийти все те же рупоры и звуковые волноводы, а также специальное расположение динамиков (многие производители выносят ВЧ динамик в отдельный корпус, который размещается в верхней части горизонтальной АС центрального канала).

Коаксиальные излучатели

Другой возможностью стабилизировать диаграмму направленности является конструирование так называемых коаксиальных звуковых излучателей, т. е. динамиков, в которых вуфер и твитер расположены на одной оси и звук излучается практически из одной точки. Несмотря на явные преимущества подобной схемы, акустических систем, в которых бы она применялась, не так много, и связано это в первую очередь с трудностями реализации коаксиальной электродинамической головки. Наибольших успехов в их производстве добились английские компании Tannoy и KEF, причем именно KEF наиболее активно популяризирует принцип коаксиального звукового излучателя, который имеет фирменное название UniQ. Модуль UniQ на сегодняшний день используется практически во всех акустических системах, выпускаемых компанией, за исключением бюджетных линеек. Уникальность его конструкции заключается в том, что коаксиальные средне- и высокочастотник собраны на одной магнитной системе, при этом диффузор вуфера выполняет роль акустического рупора для расположенного в его центре твитера. Согласитесь, идея очень оригинальная и, как показали многочисленные тесты, проводившиеся экспертами нашего журнала, работоспособная. В частности, акустические системы KEF, оснащенные модулем UniQ, обладают исключительными пространственными характеристиками воспроизводимого звука. Помимо улучшения характеристики направленности коаксиальное размещение динамиков дает еще одно преимущество, позволяет избежать фазовой задержки между сигналами, излучаемыми разными динамиками. Эта задержка происходит из-за того, что динамики расположены на разной высоте, а, следовательно, звуковые волны, излучаемые ими, преодолевают разные расстояния на пути к точке прослушивания. Кстати, некоторые компании специально изготавливают фронтальные панели акустических систем наклонными. Это позволяет минимизировать разницу расстояний между различными динамиками и точкой прослушивания.

Биполярные АС

Биполярные громкоговорители представляют собой «сдвоенные» акустические системы, в которых имеется 2 комплекта динамиков, расположенных на фронтальной и тыловой панелях и воспроизводящих звук в одной фазе. Подобное расположение динамиков позволяет получить практически круговую диаграмму направленности на низких и средних частотах. Характеристика направленности биполярных АС на высоких частотах имеет форму восьмерки.
Таким образом, биполярные АС позволяют воспроизводить практически ненаправленное, так называемое диффузное звучание, которое при определенных условиях неплохо подходит, например, при озвучивании тыловых каналов в домашнем кинотеатре. В частности, при невозможности выделить под домашний кинозал акустически обработанную комнату больших размеров, ненаправленный звук тыловых биполярных АС можно признать оптимальным, поскольку он обладает меньшей привязкой к акустическим системам и меньше подвержен вредному влиянию отражений от стен и потолка. Эти отражения распределяются равномерно по различным направлениям распространения звука и выражены не очень явно.

Дипольные АС

Дипольными акустическими системами называются такие громкоговорители, которые имеют излучатели на фронтальной и тыловой панелях, но работают они при этом в противофазе. К дипольным АС относятся плоские панели, электростатические и электромагнитные АС, а также специально сконструированные электродинамические колонки. Диаграмма направленности дипольных громкоговорителей, как на низких и средних, так и на высоких частотах, имеет форму восьмерки. Эти акустические системы эффективно излучают звук во фронтальном и тыловом направлении. По бокам же прямая и обратная волны гасят друг друга, и звук практически отсутствует.

Дипольные громкоговорители хорошо подходят для применения в небольших помещениях или при установке в непосредственной близости от стен. Поскольку их звук практически не распространяется в боковом направлении, то такая конструкция позволяет свести к минимуму отражения от боковых стен комнаты прослушивания.
Очень необычную конструкцию дипольной акустической системы предложила знаменитая датская компания JAMO, в своей новейшей разработке - акустической системе JAMO Reference 909. Проведя серию весьма логичных рассуждений, специалисты компании пришли к выводу, что одним из основных препятствий на пути к качественному звуку является корпус громкоговорителя, который обладает собственной резонансной частотой, а также склонен к появлению вибраций, негативно сказывающихся на параметрах звуковоспроизведения. В результате этих рассуждений на свет появилась колонка, в которой производители обошлись вообще без корпуса. Как следует из наших предыдущих рассуждений, у акустической системы без корпуса должны непременно возникнуть проблемы с воспроизведением низких частот, поскольку на них будет происходить акустическое короткое замыкание. Для того чтобы воспроизводить бас, несмотря на это неприятное явление, конструкторы R909 применили два гигантских низкочастотника диаметром 380 мм каждый, которые обладают большими ходами диффузора и способны перемещать весьма значительные воздушные массы. Кроме того, динамик должен обладать очень высокой чувствительностью, и это требование также было выполнено. В результате конструкторам JAMO R909 удалось добиться качественного и точного воспроизведения баса в акустике открытого типа, отказавшись при этом от «вредоносного» с их точки зрения корпуса и получив все преимущества дипольной акустической системы, одним из которых является отсутствие звукового излучения в боковом направлении. Это позволяет свести к минимуму отражения от боковых стен, а, следовательно, нарисовать более четкую и сфокусированную звуковую картину.

Омниполярные АС

Помимо перечисленных выше типов акустических систем с диаграммами направленности той или иной формы на рынке аудиотехники присутствуют громкоговорители, которые имеют совершенно ненаправленное звучание, т. е. круговую диаграмму направленности на всех частотах. Например, компания MIRAGE является поклонницей так называемых омниполярных громкоговорителей, в которых применяются динамики с вертикальной акустической осью. На оси динамиков устанавливаются специальные симметричные акустические рассекатели, поэтому звуковая волна, отражаясь от них, равномерно распространяется по кругу в горизонтальной плоскости.
Другой интересный тип акустических систем с круговой диаграммой направленности - это так называемые контрапертурные громкоговорители, о которых мы расскажем чуть подробнее.
Вообще говоря, контрапертурный принцип построения акустических систем был разработан в России. Были изготовлены даже несколько «ходовых» образцов, которые можно было увидеть на «камерных» выставках типа «Российского хай-енда» и более массовом «Hi-Fi Show». Однако серьезное развитие контрапертурный принцип получил только сейчас, когда за их выпуск принялась итальянская компания Bolzano Villetri.
Итак, в чем же заключается основная идея этих необычных громкоговорителей? Суть ее такова: два одинаковых СЧ/НЧ динамика, помещенные каждый в своем корпусе, располагаются так, чтобы излучающие поверхности их диффузоров смотрели друг на друга. Акустическая ось динамиков при этом вертикальна. На каждый из двух громкоговорителей подается один и тот же звуковой сигнал, который заставляет их совершать колебания, причем эти колебания происходят в фазе. Излучаемые динамиками звуковые волны встречаются в пространстве между ними и вызывают симметричную деформацию воздушного столба, которая приводит к абсолютно ненаправленному в горизонтальной плоскости излучению звука. В качестве аналогии здесь можно привести камень, брошенный в воду и расходящиеся от него круги. Если посмотреть на картину распространения звука контрапертурных АС в горизонтальной плоскости, то она будет точно такая же.
Помимо низких и средних частот акустические системы должны воспроизводить высокие, и именно с их направленностью, как мы уже говорили, связаны наибольшие конструктивные трудности. В данном случае разработчики предложили достаточно простое, но оригинальное решение. Два одинаковых твитера помещаются в пространстве между контрапертурными СЧ/НЧ динамиками, причем их излучающие поверхности направлены уже противоположно. Таким образом, диффузоры низкочастотных громкоговорителей, имеющие коническую форму, выполняют роль акустических рассекателей для твитеров, и излучаемые высокие частоты также имеют круговую диаграмму направленности. Что получает слушатель от применения контрапертурных акустических систем?
Во-первых, их звук, являясь ненаправленным, имеет одинаковые частотные характеристики для любого направления распространения. Это значит, что для качественного прослушивания нет необходимости усаживаться строго на пересечении звуковых осей громкоговорителей. В любой точке комнаты характеристики звука будут одинаковыми. Во-вторых, не стоит забывать про отражения от стен помещения.
При применении традиционных акустических систем мы имеем следующую ситуацию: звук, излучаемый громкоговорителем, имеет хорошую частотную характеристику во фронтальном направлении и гораздо более проблемную под углом к акустической оси (это связано с тем, что высокие частоты распространяются в основном во фронтальном направлении, а при отклонении от него в звучании начинают преобладать низкочастотные составляющие).
Поскольку боковые стены помещения отражают именно этот «проблемный» звук, то результирующая звуковая картина в месте прослушивания будет складываться из «хорошего» прямого звука и «плохого», обедненного на верхах, отраженного. Без специальной акустической обработки помещения результат может вполне заставить разочароваться в качестве даже самых высококлассных АС. В контрапертурных «одинаково направленных» АС звук, пришедший к слушателю напрямую и отраженный от стен, имеет более близкие характеристики, поскольку в данном случае на формирование АЧХ отраженной волны оказывает влияние только частотная характеристика поглощения боковых стен.

В данный момент сложно указать на какие-либо специфические особенности звучания контрапертурных АС Bolzano Villetri. Мы обязательно остановимся более подробно на этих необычных колонках в ближайших тестах нашего издания. Предварительные прослушивания этой акустики продемонстрировали очень комфортное и естественное, хотя и немного непривычное звучание.

Итак, мы рассмотрели наиболее распространенные типы направленности акустических систем. На вопрос, какой из этих типов подойдет именно вам, мы не можем дать однозначный ответ. С точки зрения пространственной достоверности воспроизведения, вероятно, выигрывают традиционные акустические системы с фронтальными динамиками, а также дипольные громкоговорители. Они позволяют наиболее точно передавать пространственные эффекты, заложенные в фонограмму звукорежиссером, не привнося в нее ничего от себя. Стоит, однако, отметить, что все это справедливо только для специально оборудованных и подготовленных помещений прослушивания. В обычной жилой комнате результат спрогнозировать сложно. Биполярные акустические системы хорошо подходят в качестве тыловых каналов в домашнем кинотеатре в небольшом или неподготовленном помещении. Они имеют более равномерную направленность и создают позади слушателя распределенную звуковую картину. Иногда это то, чего не хватает для получения максимального эффекта присутствия, т. е. того, ради чего мы и покупаем многоканальные звуковые системы. Контрапертурная акустика с круговой диаграммой направленности создает равномерное и комфортное звучание. Она в меньшей, чем другие типы АС, степени зависит от акустических характеристик комнаты прослушивания.

Как бы то ни было, мы не ставили перед собой задачи дать в этой статье «рецепты» правильного звучания. Мы просто надеемся, что она поможет вам правильно формулировать вопросы и четко ставить цели, которых вы хотите добиться при построении домашней аудиосистемы. Дальше, что называется, дело техники. Удачи!

Страница подготовлена по материалам сайта http://www.shop.danceguitar.ru/


Адрес администрации сайта:

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ:

Эта статья появилась в результате переписки с одним из постоянных авторов американского журнала «STEREOFILE». Она не является рекомендацией к приобретению тех или иных акустических систем. Читатель найдет здесь интересные соображения о передаче звукового пространства современными акустическими системами.

Должность аудио обозревателя журнала «STEREOFILE» связана с прослушиванием почти всех акустических систем (АС), появляющихся на рынке. Немало времени мне приходилось заниматься и профессиональной записью музыки, как в качестве инженера, так и музыканта. Все это привело меня к мнению, что одним из важнейших свойств высококачественных АС является правильная передача звукового пространства, созданного при записи. Однако есть популярные модели АС, которые однозначно этому требованию не удовлетворяют - при этом намеренно.

Звуковое пространство - это пространство, создаваемое нашим воображением позади и между двумя АС, работающими в стерео. Иногда также применяется термин «звуковая сцена». При записи музыки немало труда уделяется созданию её звукового пространства, такого, чтобы при воспроизведении записи дома на бытовой стереосистеме музыканты «расположились» в определенном порядке. Ударная установка может «парить» где-то посередине между АС, гитарист чуть правее, фортепиано чуть слева, а певцы расставлены по сцене так, чтобы каждый занимал свою позицию. И действительно, если стереосистема правильно воспроизводит звуковое пространство, то закрыв глаза, можно «увидеть» каждого исполнителя.

Передача звукового пространства непосредственно связана с характеристикой направленности АС. Традиционно акустические системы с громкоговорителями на передней панели излучают звук только в одном направлении - к слушателю. Пара таких систем всю свою акустическую мощность отправляет к слушателю, не внося в звуковое пространство искажений, связанных с отражениями от стен, мебели около АС и т.п. Прослушивание в таких условиях позволяет передать запись так, как этого хотели звукорежиссер и музыканты.

Тем не менее, существуют АС, намеренно разработанные для искажения звукового пространства. Громкоговорители у таких АС располагаются не только на передней панели, а еще и сбоку и сзади. Такая АС излучает звук сразу во всех направлениях. Почти весь звук, доходящий до ушей слушателя, претерпевает отражения от стен. В оправдание такого воспроизведения звука приводится ошибочное утверждение, что поскольку реальные музыкальные инструменты излучают звук во всех направлениях, то для «естественного» звучания акустической системе нужно делать то же самое. Это абсолютно неверно, поскольку в то время как реальные инструменты излучают звук во всех направлениях, микрофоны, этот звук принимающие, «слышат» его только с одного направления. Чтобы передать звучание со всех направлений, понадобится полностью окружить инструмент бесконечным числом микрофонов. Сделать это невозможно. И не нужно - дело в том, что микрофон, направленный на музыкальный инструмент, воспринимает все его звучание, потому что мембрана микрофона воспринимает и прямой звук, и отражения, созданные инструментом в концертном зале (реверберация). Точно также слышит музыку человеческое ухо! В случае с АС прямого излучения слушатель воспринимает истинное соотношение прямого и отраженного звука - то, которое было во время записи. АС, излучающая звук во все стороны, меняет это соотношение. При этом запись уже нельзя услышать такой, какой она задумывалась - вы слышите отражения исходного отраженного звука от стен вашей комнаты. Реверберация реверберации. Согласитесь, что это полностью неестественная, искусственная обработка звука.

Акустические системы, излучающие звук во всех направлениях, искаженно передают звуковое пространство: звуковые образы инструментов неопределенны, а звуковая картинка не имеет ничего общего с оригиналом. Мне приходилось слушать собственные записи на таких АС и я был неприятно поражен, насколько искаженно они звучат по сравнению с АС прямого излучения. На массовом потребительском рынке весьма популярны американские АС, использующие многостороннюю направленность, но единственная их популярности в том, что многим людям не хватает знаний и опыта в таких вопросах как звуковое пространство, правильность воспроизведения и реальное звучание записи. Неосведомленным людям искажения, вносимые такими АС, кажутся привлекательными, потому что они «расширяют» звучание как при электронной обработке звука. Так как этой обработке подвергается каждая запись, воспроизводимая через АС, она становится утомительной и раздражает. Искажения звукового поля в таких АС часто заставляют поскорее продать свое приобретение и купить хорошие АС прямого излучения, которые годами будут верой и правдой приносить прослушивание музыки.

Мне хочется надеется, что я помог лучше понять связь правильности передачи звукового поля с конструкцией АС. Счастье аудиофила заключается в информативности - желаю удачных покупок!

Мере задействуют «фактор помещения». Эти разработки основываются на результатах многочисленных психоакустических исследований. Главными преимуществами звука ненаправленных (или обладающих «круговой направленностью») акустических систем считаются схожесть тембров прямого и отраженного звука в точке прослушивания, а

также повышенная «объемность» музыкального образа. Характеристику направленности можно показать с помощью диаграмм направленности (рис. 18.16), измеренных на разных частотах и последовательно наложенных друг на друга. Однако если на одном рисунке будет очень много кривых, то изображение станет неразборчивым, особенно если кривые нарисованы в серых тонах. В настоящее время существует множество способов изображения, которые могут помочь в данной ситуации, например цветная печать. Но если не ограничить количество частот, то диаграммы будет трудно читать, особенно при малом масштабе изображения. Весьма удобным способом является изображение наложенных графиков в трехмерной системе координат. При расположении одной диаграммы над другой видна некоторая асимметрия в излучении, но без указателя с подписью трудно определить частоту конкретной кривой. На стеке диаграмм также наблюдается уменьшение угла покрытия с ростом частоты.

Разделительные фильтры

В акустических системах с электродинамическими головками для согласования их характеристик и диаграмм направленности используют разделительные фильтры. Кроме того, так как центры излучения этих громкоговорителей (примерно совпадающих с местом расположения звуковой катушки громкоговорителя) сдвинуты относительно друг друга (глубина СЧ- и особенно НЧ-громкоговорителя намного больше, чем у ВЧ- громкоговорителя), при расчете разделительных фильтров приходится учитывать необходимость коррекции возникающего при этом временного сдвига в излучаемой этими громкоговорителями звуковой волне с помощью фазокорректирующих цепочек. Уменьшение временной задержки в излучении различных громкоговорителей можно добиться и чисто конструктивными методами, смещая ВЧ- и СЧ-головку внутрь корпуса АС, например, используя наклонную переднюю панель акустической системы с "заваленной" назад верхней частью.

Что касается собственно самих разделительных фильтров, то их роль в современной АС существенно возросла. Это вызвано, с одной стороны, резким повышением требований слушателей к качеству звучания аудиоаппаратуры вообще и акустических систем в частности, а с другой стороны - возросшим качеством современных громкоговорителей. В этих условиях неоптимальное подключение громкоговорителей в акустической системе не позволит полностью реализовать потенциально высокое качество этих громкоговорителей. Поэтому разработчики современных фильтров для акустических систем учитывают при их проектировании не только требования обеспечить максимально плоскую АЧХ и линейную ФЧХ в полосе пропускания фильтра, но и учитывают при расчете элементов схемы фильтра изменение комплексного сопротивления громкоговорителя на разных частотах, требования обеспечения заданной диаграммы направленности акустической системы на этих частотах и т.д. Все это стало возможным благодаря широкому использованию при проектировании АС численных методов компьютерного моделирования и проектирования.

Фильтры Баттерворта имеют линейную АЧХ в полосе пропускания фильтра, резко обрывающуюся в полосе затухания фильтра. Однако переходная характеристика таких фильтров носит сильно выраженный колебательный характер. Фильтры Бесселя также имеют линейную АЧХ в полосе пропускания и сравнительно резкий спад в полосе затухания. Однако благодаря линейной зависимости фазового сдвига сигнала в зависимости от его частоты переходная характеристика АС с такими фильтрами хотя и имеет выброс на АЧХ, но не имеет колебательного характера. Фильтры Чебышева имеют чрезвычайно резкий спад АЧХ в полосе затухания, однако АЧХ фильтра в его полосе пропускания носит волнистый характер. Наиболее сложные схемы разделительных фильтров включают в себя также специальные корректирующие цепи, которые компенсируют изменение импеданса громкоговорителя на разных частотах. В результате такой стабилизации импеданса условия работы разделительного фильтра существенно улучшаются, так как он нагружен на постоянный и согласованный с ним импеданс нагрузки (громкоговоритель). Поэтому параметры АЧХ фильтра получаются близкими к расчетным. В случае же работы фильтра на рассогласованную нагрузку значения параметров его АЧХ и ФЧХ становятся непредсказуемыми. Нет нужды говорить, что это губительно сказывается на качестве звучания АС.

Иногда в схему фильтра включают также специальные режектирующие цепочки с целью блокирования в фильтре сигналов на частоте резонанса громкоговорителя,такие цепочки используют в фильтрах СЧ- и ВЧ-громкоговорителей.

Итак, как мы видим, в современных АС используются весьма сложные схемы фильтров, количество элементов в которых (особенно при встраивании в схему фильтра элементов защиты громкоговорителей) может достигать нескольких десятков. С другой стороны, многие высококачественные АС имеют простейшие фильтры 1-2-го порядка, состоящие всего из нескольких электронных компонентов.

Выбор и расчет параметров оптимального варианта акустического оформления

В процессе разработки акустической системы, мною поставлена задача получения высокого качества концертного звучания, позволяющего в полном объеме раскрыть эмоциональный потенциал музыкального материала в помещениях различного объемаа также на открытых площадках.

Результатом курсовой работы должен быть математический расчёт АС с блоком фильтров. АС будет иметь следующие особенности:

1.3 полноценных полосы (НЧ,СЧ, рупорная ВЧ)

2.Равномерную частотную характеристику (отклонение в области низких частот ±4 дБ в области низких частот)

3.Акустическое оформление будет представлять собой ящик с фазоинвертором аппроксимирующий аналитическое выражение фильтра Баттерворта 3-го порядка, для получения равномерной частотной характеристики в области НЧ

4.Выбор экспоненциального рупора для ВЧ излучателя, для повышения мощности излучателя в верхнем диапазоне частот.

5.В качестве излучателей я буду брать динамические головки различных производителей, которые будут иметь удовлетворительные параметры для решения поставленной задачи.

Программная среда SPEAKERSHOP

Приступим сразу и непосредственно к предмету рассмотрения - компьютерному программному обеспечению SPEAKERSHOP, подготовленному специалистами фирмы JBL для разработки и расчета параметров акустического оформления сабвуферов. Сразу оговорюсь, что программа хорошо сработает применительно и к домашней акустике, но это не наш случай, и что она позволяет производить вычисления не только для динамиков JBL, а собственно для самых разных изделий - были бы известны значения необходимых характеристик.

Это программное обеспечение помогает определить объем и размеры корпуса и оценить качество звучания. Конструкция анализируется в два этапа. Прежде всего определяется, как она будет работать при нормальных уровнях прослушивания. Эта процедура называется анализом на малых сигналах и включает в себя расчет амплитудной (частотной) характеристики, характеристики сопротивления звуковой катушки, фазовой характеристики и групповой задержки. Во вторую очередь для конструкции моделируется режим максимальной громкости. Этот этап называется анализом на больших сигналах и включает в себя нормы термальной акустической мощности в диапазоне средних частот и характеристику максимальной мощности при различных отклонениях.

Существуют два способа конструирования корпусов с помощью программы SPEAKERSHOP Enclosure Module. Один из них предусматривает конструирование корпуса для определенных выбранных динамиков. При этом варьируются характеристики корпуса. Другой способ заключается в поиске подходящих динамиков для существующего корпуса: вы подбираете модели динамиков. Метод конструирования может быть выбран с помощью команды Variable в меню Options.

Рисунок 18.17

Электронная таблица содержит колонки для конструирования шести корпусов.

Первые три предназначены для расчета корпусов с фазоинвертором - для оптимальной, пользовательской (т.е. проектируемой самим мастером) конструкций и для корпусов, рассчитанных на определенную полосу частот. Следующая колонка предназначена для пользовательской конструкции корпуса с пассивным излучателем. Последние две колонки предназначены для оптимальной и пользовательской

конструкции для корпусов закрытого типа.

Режим, когда изменяемой величиной является сам динамик, задается с помощью команды Variable-Loudspeaker в меню Options. Это на случай выбора подходящих динамиков для уже существующего корпуса. Режим очень удобен для расчетов звуковоспроизводящих систем автомобилей, когда необходимо подобрать динамик под строго заданный объем, так как позволяет быстро проверять работу нескольких различных акустических систем в конкретном корпусе или в определенном ограниченном пространстве.

В режиме Variable-Loudspeaker используется электронная таблица-меню другого вида. Вместо показа шести различных конструкций корпусов, как это делается в режиме Variable-Box, одновременно демонстрируются шесть различных динамиков. Таким образом дается возможность быстро сравнить до шести различных моделей. В данном пакете предоставляется возможным вводить минимальные параметры, включающие в себя название производителя (Manufacturer), название модели (Model), Fs, Vas и Qts. Номинальную эффективность или чувствительность необходимо вводить только при конструировании корпусов с фазоинвертором.

В базе хранятся значения всех необходимых характеристик большого количества динамиков самых разных фирм-изготовителей. "Сектор обстрела" очень широк, достаточно перечислить в качестве иллюстрации несколько фирм из начала списка: A&S Speakers, Acoustic Research, AcousticPro - и из его окончания: Xtasy Audio, Yamaha, Zachry. Конечно же, если вы не обнаружили искомую модель, то ее можно вместе с характеристиками внести в базу, наращивая содержащуюся в ней информацию. Более того, если у вас есть возможность измерить амплитудно-частотные характеристики динамика в специальном тестовом корпусе-экране или получить эти данные от производителя, то предусмотрен вариант поточечного внесения экспериментальных значений. Понятное дело, добавление экспериментальных данных повысит точность результата расчетов. Программа также позволяет проводить автоматический подбор моделей динамиков, удовлетворяющих наперед заданным условиям. Целью оптимизации конструкции корпуса с фазоинвертором является выбор объема, обеспечивающего наиболее ровную и плавную амплитудную характеристику в области частот настройки порта фазоинвертора. Преимуществами такой конструкции являются более широкая характеристика в диапазоне средних и низких частот, меньшие искажения за счет меньшей амплитуды диффузора, более высокая эффективность и меньшая общая стоимость. Конструкция корпуса с фазоинвертором относительно чувствительна к изменению параметров динамика. В таком корпусе лучше работают динамики с достаточно низким Qts (от 0,2 до 0,5). Конструкции корпусов с фазоинвертором допускают значительно большую частоту резонанса (Fs), а также применение звуковых катушек с укороченным шагом намотки (низкое значение Xmax) и более жесткого подвеса (небольшое значение Vas), чем конструкции закрытых корпусов. Уменьшение корпуса с фазоинвертором потребует более низкого Qts и меньшего значения Vas.

Система с большой бассовой отдачей и система с более "гладкой" басовой АЧХ; 2)Недостаточно задемпфированная система (объем короба мал) и передемпфированная система (объем короба велик)

Fs - Собственная резонансная частота динамика (Гц).

Qts - Добротность динамика для значения частоты Fs с учетом всех электромагнитных и механических потерь.

Vas - Объем воздуха, имеющий упругость, эквивалентную упругости подвеса динамика (кубические футы или дюймы, а также литры).

Получаемые "на выходе" графики

Вданной программе вы можете получить доступ к шести графикам различных характеристик. Это графики: нормализованной амплитудно-частотной характеристики

Рисунок 18.18

Расчет акустической системы. Описание конструкции.

Для расчёта акустического оформления потребовались параметры Тиле-Смолла низкочастотных динамиков. Характеристики динамиков выбираем из базы данных программы SPEAKERSHOР. Мною был выбрана динамическая головка JBL 1800GTiкоторая имеет следующие характеристики:

    F s =30 Гц - резонансная частота

    Q ms =5,54 - механическая добротность

    V as = 362 литра - эквивалентный объём

    Dia=42,5 см - эффективный диаметр диффузора

    Q ts =0,43 - полная добротность

    Q es =0,456 - акустическая добротность

    Re=3 Ом - сопротивление постоянному току

    Z=4 Ом - импеданс

    Pe=600 Вт - предельная мощность

Отношение F s /Q ts получилось порядка 93, из чего я сделал вывод, что динамик больше тяготеет к фазоинверсному акустическому оформлению. Поясню: по отношению резонансной частоты к добротности можно довольно точно определить тип будущего акустического оформления. Если это отношение мене 50 то динамик однозначно создан

для закрытого корпуса, если более 100 – то для фазоинвертора.

Подставив данные в JBL Speaker Shop получил характеристики:

Рисунок 18.19 АЧХ динамика JBL 1800GTiв ящике с фазоинвертором.

При расчете программой внутренний объем короба составил 380 литров. Исходя из этого предложено следующие размеры сторон акустической системы.

Корпус громкоговорителя будет изготовлен из фанеры или древесно-стружечной плиты толщиной около 20 мм.. Места соединения боковых стенок с верхней и нижней стенками будет укреплено прямоугольными ребрами жесткости изготовленными из стали. Для устранения влияния отражения сигнала на средних частотах внутри корпуса будет размещен простеганный слой натуральной или минеральной ваты толщиной не менее 50 мм. Такое покрытие должно быть выполнено по всей внутренней поверхности корпуса. ВЧ и СЧ динамики установлены с внешней стороны передней панели.

Для акустической изоляции СЧ и ВЧ динамиков, будут изготовлены небольшие боксы из 10-и миллиметровой фанеры.

Также с помощью программы определили

частоту настройки ящика-фазоинвертора.

fb =26,8 Гц.

Выбрав соотношение сторон ящика равными 1:0.8:0.5,найдем его высоту ширину и глубину.1.4;0.6;0.5.При толщине передней панели и остальных стенок 20мм. Наружные размеры ящика будут равны 1.42 0.62 0.52м. Расчет фазоинвертора основан на определении акустической массы. которая вместе с гибкостью свободного объема ящика резонирует на частоте.

Риснок 18.20

Отношение длины трубы Lvк площади выходного отверстия Sv:
(18.2)

Подставляя в последнее уравнение численные значения свобод­ного объема и частоты настройки, получаем:
=11.17

Следует отметить, что Lv - кажущаяся длина инвертора, вклю­чающая в себя как непосредственно длину трубы или полки, так и приращение за счет краевых эффектов.

Абсолютные значения Sv и Lv при сохранений нужного отноше­ния выбираются из следующих соображений. Площадь фазоинверсного отверстия не может быть слишком малой, иначе за счет боль­шой колебательной скорости в инверторе могут возникнуть нелиней­ные искажения и посторонние призвуки. По воз­можности Sv приближают к верхнему пределу. Однако, чем больше площадь инвертора, тем большей должна быть его длина, чтобы отношение Sv/Lv оставалось неизменным. Размещение же большой трубы в ящике связано с усложнением его конструкции и увеличе­нием размеров.

При всех условиях свободный внутренний объем ящика не дол­жен изменяться. Кроме того, слишком длинная труба в верхней ча­сти низкочастотного диапазона перестает работать как система с сосредоточенными параметрами, что может привести к увеличению не­равномерности частотной характеристики громкоговорителя.

Для рассматриваемого примера выберем площадь фазоинверсного отверстия равной 0,3 эффективной площади диффузора. При соот­ношении эффективного и номинального диаметров Dэфф=0,74D (18.3) для головки с D = 0,42 м площадь фазоинверсного отверстия составит: Sv =0.3∙3.14∙
=2.3∙10 -2
.

Из условия Lv/Sv =11.17
получим Lv=0,25 м. Чтобы опреде­лить истинную длину ивертора, из найденного значения следует вы­честь поправку на краевые эффекты:

(18.4)

Следовательно, длина инвертора, включая толщину передней стенки, составит:

L= 0.25 -
= 0.2 м.

Конструктивно фазоинвертор может быть выполнен, например, в виде трубы круглого или прямоугольного сечения. Определив точ­ные размеры инвертора, можно проверить правильность расчета раз­меров ящика. Полный внутренний объем ящика должен быть равен сумме необходимого свободного объема, объема, занимаемого голов­кой, инвертором и брусьями каркаса

Заключение

Данная работа посвящена одному из важнейших направлений прикладной акустики - разработке и расчету мощной акустической системы. Разработчиком этого проекта была поставлена задача добиться линейной частотной характеристики в области низких частот. Для этого было выбрано акустическое оформление в виде ящика с фазоинвертором аппроксимирующим аналитическое выражение фильтра Баттерворта 3-го порядка.

В результате выполнения работы получены следующие основные результаты:

    Внутренний объем и геометрические размеры корпуса

    Частота настройки ящика-фазоинвертора

    Значение добротности для корпуса

    Амплитудно-частотная характеристика акустической системы

    Нижняя граничная частота по уровню -3дБ

    Диаметр и площадь поперечного сечения воздуховода

    Длина воздуховода в корпусе с фазоинвертором